Drafts

Drafts

Drafts

NBA draft

Drafts

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.
- They are expected to pick Oden.

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.
- They are expected to pick Oden.

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Rlazers have the No. 1 pick.
- They are expected to pick Oden.

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.
- Thev are expected to pick Oden.

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.
- They are expected to pick Oden.

NBA draft

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.
- They are expected to pick Oden.

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
- Similar problems exist in dispute resolution, divorce, MBA school interviews, classes, etc. We used a draft for dividing ministries between political parties.

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

> Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
Similar problems exist in dispute resolution, divorce, MBA
school interviews, classes, etc. We used a draft for dividing
ministries between political parties.

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

> Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
- Similar problems exist in dispute resolution, divorce, MBA school interviews, classes, etc. We used a draft for dividing ministries between political parties.

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)
Captain A: Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd Captain B: Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd

Sincere choice is when teams choose according to their preferences:
A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Sophisticated choice is when teams choose strategically (subgame perfection):
A-Bill B-Chris A-Arnold B-David A-Jeff B-Todd

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
> (1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
> (2) for each such match, weakly prefers the new player in A^{\prime} and
> (3) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
3 there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
(8) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
(3) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
(3) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
(3) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

An allocation A is item-by-item Pareto optimal if there is no different allocation A^{\prime} such that every team that receives a different allocation in A^{\prime} :
(1) can match a new player it gets in A^{\prime} to a different old player it gets in A and
(2) for each such match, weakly prefers the new player in A^{\prime} and
(3) there is at least one team that strictly prefers the new palyer in A^{\prime} for at least one match.

- Brams \& King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC)
A: $1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6$
B: $5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3$
C: $3 \succ 6 \succ 5 \succ 4 \succ 1 \succ 2$
Sophisticated yields $(31,25,64)$
Notice that $(12,56,34)$ makes EVERYONE better off.

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC)
A: $1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6$
B: $5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3$
C: $3 \succ 6 \succ 5 \succ 4 \succ 1 \succ 2$
Sophisticated yields $(31,25,64)$
Notice that $(12,56,34)$ makes EVERYONE better off.

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC)
A: $1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6$
B: $5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3$
C: $\mathbf{3} \succ 6 \succ 5 \succ 4 \succ 1 \succ 2$
Sophisticated yields $(31,25,64)$
Notice that $(12,56,34)$ makes EVERYONE better off.

Another Problem with Drafts

Sophisticated choices may not be monotonic in position. Non-Monotonicity: When somebody moves up in order it may hurt them or when they move down in order it may help them.

Does ex-post trading help?

What about simple ex-post trading?
Example (sequence: ABAB)

$$
\begin{aligned}
& \text { A: } 1234 \\
& \text { B: } 2341
\end{aligned}
$$

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?
Example (sequence: ABAB)
A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?
Example (sequence: ABAB)
A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2, then
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)

> A: 1234
> B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
(1) If B doesn't choose 1, A will get 1.
(2) If B chooses $1, A$ chooses 3 .
- If A has bargaining power, he car trade 3 for 1 instead of 2 for 1
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)

> A: 1234
> B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2, then
(1) If B doesn't choose $1, A$ will get 1 .
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)

> A: 1234
> B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
(1) If B doesn't choose $1, A$ will get 1 .
(2) If B chooses $1, \mathrm{~A}$ chooses 3 .
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)

> A: 1234
> B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
(3) If B doesn't choose $1, \mathrm{~A}$ will get 1 .
(3) If B chooses $1, \mathrm{~A}$ chooses 3 .
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)

A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- If A chooses 2 , then
(3) If B doesn't choose $1, \mathrm{~A}$ will get 1 .
(2) If B chooses $1, A$ chooses 3 .
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Implementing the Sincere Outcome

Take any example of two teams.
Rules:
(1) Each team can choose an object still available.
(2) At the time of selection, they can make an offer to swap this object for another object already chosen.
(3) This offer is placed on hold until all objects are selected.
(4) We then go back over the offers starting with the most recent and going back to the furthest in the past

Implementing the Sincere Outcome

Take any example of two teams.
Rules:
(1) Each team can choose an object still available.
(2) At the time of selection, they can make an offer to swap this object for another object already chosen.
B This offer is placed on hold until all objects are selected.
(9) We then go back over the offers starting with the most recent and going back to the furthest in the past

Implementing the Sincere Outcome

Take any example of two teams.
Rules:
(1) Each team can choose an object still available.
(2) At the time of selection, they can make an offer to swap this object for another object already chosen.
(3) This offer is placed on hold until all objects are selected.
(4) We then go back over the offers starting with the most recent and going back to the furthest in the past

Implementing the Sincere Outcome

Take any example of two teams.
Rules:
(1) Each team can choose an object still available.
(2) At the time of selection, they can make an offer to swap this object for another object already chosen.
(3) This offer is placed on hold until all objects are selected.
4) We then go back over the offers starting with the most recent and going back to the furthest in the past

Implementing the Sincere Outcome

Take any example of two teams.
Rules:
(1) Each team can choose an object still available.
(2) At the time of selection, they can make an offer to swap this object for another object already chosen.
(3) This offer is placed on hold until all objects are selected.
4. We then go back over the offers starting with the most recent and going back to the furthest in the past

Example (sequence: ABAB)

A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with $A 2$, then we follow with $B 1 \rightarrow 2$, A3, B4

Example (sequence: ABAB)
A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with $A 2$, then we follow with $B 1 \rightarrow 2$, A3, B4

Example (sequence: ABAB)

A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with $A 2$, then we follow with $B 1 \rightarrow 2$, A3, B4

Example (sequence: ABAB)
A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.

Example (sequence: ABAB)

A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with $A 2$, then we follow with $B 1 \rightarrow 2$, A3, B4
- Note if instead of $A 3$, A chooses $A 3 \rightarrow 1$, it would be refused.

Example (sequence: ABAB)

A: 1234
B: 2341

- Sincere play is $A 1, B 2, A 3, B 4$ yielding $(13,24)$
- Sophisticated play is $A 2, B 3, A 1, B 4$ yielding $(12,34)$
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with $A 2$, then we follow with $B 1 \rightarrow 2$, A3, B4
- Note if instead of $A 3$, A chooses $A 3 \rightarrow 1$, it would be refused.

Intuition of Strategy

Either player can guarantee himself an outcome at least as good as the sincere outcome.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free. Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose $x->y$. (choose x and offer to trade it for y).

Intuition of Strategy

Either player can guarantee himself an outcome at least as good as the sincere outcome.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose $x->y$. (choose x and offer to trade it for y).

Intuition of Strategy

Either player can guarantee himself an outcome at least as good as the sincere outcome.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free. Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose $x->y$. (choose x and offer to trade it for y).

Intuition of Strategy

Either player can guarantee himself an outcome at least as good as the sincere outcome.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free. Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.

Intuition of Strategy

Either player can guarantee himself an outcome at least as good as the sincere outcome.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free. Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose $x->y$. (choose x and offer to trade it for y).

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft nositions or trading olavers after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem
Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft nositions or trading nlavers after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
> - Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

[^0]
Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

[^1]Advantages for system

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Three team procedure.

[^0]: Open Problem
 Three team procedure.

[^1]: Open Problem
 Three team procedure.

