

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
 - Portland Trail Blazers have the No. 1 pick.
 - They are expected to pick Oden.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
 - Portland Trail Blazers have the No. 1 pick.
 - They are expected to pick Oden.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

・ロト ・ 四ト ・ ヨト ・ ヨト

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

・ロット (雪) (日) (日)

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

・ コット (雪) (小田) (コット 日)

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Greg Oden is a center from Ohio State.
- Today June 28, 2007 is the day of the NBA draft.
- There will be two rounds of 30 players selected.
- Portland Trail Blazers have the No. 1 pick.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

 $\begin{array}{l} \textbf{Captain A: } Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd \\ \textbf{Captain B: } Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd \\ \end{array}$

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
- Similar problems exist in dispute resolution, divorce, MBA school interviews, classes, etc. We used a draft for dividing ministries between political parties.

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

 $\begin{array}{l} \textbf{Captain A: } Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd \\ \textbf{Captain B: } Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd \\ \end{array}$

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
- Similar problems exist in dispute resolution, divorce, MBA school interviews, classes, etc. We used a draft for dividing ministries between political parties.

What is a draft?

In grade school, the sadistic gym teacher chooses two captains. They then choose teams according to who is good, popular and friends. They alternate turns until no one is left.

Example: Draft

 $\begin{array}{l} \textbf{Captain A: } Arnold \succ Bill \succ Chris \succ David \succ Jeff \succ Todd \\ \textbf{Captain B: } Bill \succ Chris \succ David \succ Arnold \succ Jeff \succ Todd \\ \end{array}$

- Sports drafts are used in all major US sports. Most important are the NBA and the NFL.
- Similar problems exist in dispute resolution, divorce, MBA school interviews, classes, etc. We used a draft for dividing ministries between political parties.

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences:

Queues/Contests

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold > Bill > Chris > David > Jeff > ToddCaptain B: Bill > Chris > David > Arnold > Jeff > Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Queues/Contests

(ロ) (同) (三) (三) (三) (○) (○)

Sincere and sophisticated solutions

Example: Draft (sequence: ABABAB)

Captain A: Arnold >> Bill >> Chris >> David >> Jeff >> ToddCaptain B: Bill >> Chris >> David >> Arnold >> Jeff >> Todd

Sincere choice is when teams choose according to their preferences: A-Arnold B-Bill A-Chris B-David A-Jeff B-Todd

Item-by-Item Pareto Optimality

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
- Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
- Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
- Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
- Note the two allocations compared must each have the same number of players for each team.
- Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
 - Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
 - Note the two allocations compared must each have the same number of players for each team.
 - Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
 - Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
 - Note the two allocations compared must each have the same number of players for each team.
 - Thus, teams would not want to trade single players.

Item-by-Item Pareto Optimality

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
 - Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
 - Note the two allocations compared must each have the same number of players for each team.
 - Thus, teams would not want to trade single players.

- can match a new player it gets in A' to a different old player it gets in A and
- If or each such match, weakly prefers the new player in A' and
- there is at least one team that strictly prefers the new palyer in A' for at least one match.
 - Brams & King [2001] shows that all sincere choices are item-by-item Pareto optimal.
 - Note the two allocations compared must each have the same number of players for each team.
 - Thus, teams would not want to trade single players.

Drafts oooooooo

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Item-by-Item Pareto optimality

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC)

 $\begin{array}{l} \mathsf{A:} 1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6 \\ \mathsf{B:} 5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3 \\ \mathsf{C:} 3 \succ 6 \succ 5 \succ 4 \succ 1 \succ 2 \end{array}$

Sophisticated yields (31,25,64) Notice that (12,56,34) makes EVERYONE better off. Drafts oooooooo

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Item-by-Item Pareto optimality

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC) A: 1 > 2 > 3 > 4 > 5 > 6

A: $1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6$ B: $5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3$ C: $3 \succ 6 \succ 5 \succ 4 \succ 1 \succ 2$

Sophisticated yields (31,25,64) Notice that (12,56,34) makes EVERYONE better off.

Item-by-Item Pareto optimality

Drafts oooooooo Queues/Contests

Problems with Drafts

Sophisticated result is not necessarily item-by-item Pareto Optimal.

Example: Brams and Straffin [1979] (sequence: ABCABC) A: $1 \succ 2 \succ 3 \succ 4 \succ 5 \succ 6$ B: $5 \succ 6 \succ 2 \succ 1 \succ 4 \succ 3$ C: $3 \succ 6 \succ 5 \succ 4 \succ 1 \succ 2$

Sophisticated yields (31,25,64) Notice that (12,56,34) makes EVERYONE better off.

・ロト・日本・日本・日本・日本・日本

Drafts oo●oooooo Queues/Contests

Item-by-Item Pareto optimality

Another Problem with Drafts

Sophisticated choices may not be monotonic in position. Non-Monotonicity: When somebody moves up in order it may hurt them or when they move down in order it may help them.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

What about simple ex-post trading?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

• Sincere play is A1, B2, A3, B4 yielding (13,24)

- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Drafts ooo●ooooo Queues/Contests

Item-by-Item Pareto optimality

Does ex-post trading help?

Example (sequence: ABAB)	
A: 1 2 3 4	
B: 2 3 4 1	

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- If A chooses 2, then
 - If B doesn't choose 1, A will get 1.
 - If B chooses 1, A chooses 3.
- If A has bargaining power, he can trade 3 for 1 instead of 2 for 1.
- Thus, we won't get sincere outcomes.

Take any example of two teams. Rules:

- Each team can choose an object still available.
- At the time of selection, they can make an offer to swap this object for another object already chosen.
- This offer is placed on hold until all objects are selected.
- We then go back over the offers starting with the most recent and going back to the furthest in the past

- ロ > ・ 個 > ・ ミ > ・ ミ > ・ ミ ・ つ へ ()

Take any example of two teams. Rules:

- Each team can choose an object still available.
- At the time of selection, they can make an offer to swap this object for another object already chosen.
- This offer is placed on hold until all objects are selected.
- We then go back over the offers starting with the most recent and going back to the furthest in the past

- ロ > ・ 個 > ・ ミ > ・ ミ > ・ ミ ・ つ へ ()

Take any example of two teams. Rules:

- Each team can choose an object still available.
- At the time of selection, they can make an offer to swap this object for another object already chosen.
- This offer is placed on hold until all objects are selected.
- We then go back over the offers starting with the most recent and going back to the furthest in the past

・ロト・日本・日本・日本・日本

Take any example of two teams. Rules:

- Each team can choose an object still available.
- At the time of selection, they can make an offer to swap this object for another object already chosen.
- This offer is placed on hold until all objects are selected.
- We then go back over the offers starting with the most recent and going back to the furthest in the past

Take any example of two teams. Rules:

- Each team can choose an object still available.
- At the time of selection, they can make an offer to swap this object for another object already chosen.
- This offer is placed on hold until all objects are selected.
- We then go back over the offers starting with the most recent and going back to the furthest in the past

Example (sequence: ABAB)

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with B1 \rightarrow 2, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

Example (sequence: ABAB)

A: 1 2 3 4 B: 2 3 4 1

• Sincere play is A1, B2, A3, B4 yielding (13,24)

- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with B1 \rightarrow 2, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

Example (sequence: ABAB)

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with B1 \rightarrow 2, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

Example (sequence: ABAB)

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with $B1 \rightarrow 2$, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Example (sequence: ABAB)

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with B1 \rightarrow 2, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Example (sequence: ABAB)

- Sincere play is A1, B2, A3, B4 yielding (13,24)
- Sophisticated play is A2, B3, A1, B4 yielding (12,34)
- Our mechanism has the sincere outcome as the (subgame-perfect) equilibrium outcome.
- If A instead begins with A2, then we follow with B1 \rightarrow 2, A3, B4
 - Note if instead of A3, A chooses A3 → 1, it would be refused.

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free.
 Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to *y*, then chose the free object.
- If you prefer y to any free object, choose x-> y. (choose x and offer to trade it for y).

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free.
 Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to *y*, then chose the free object.
- If you prefer y to any free object, choose x-> y. (choose x and offer to trade it for y).

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free.
 Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to *y*, then chose the free object.
- If you prefer y to any free object, choose x-> y. (choose x and offer to trade it for y).

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free.
 Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose x -> y. (choose x and offer to trade it for y).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Intuition of Strategy

- Is there an object free that the other player prefers to what he has chosen? If no, choose your most preferred object.
- If yes, let x be the other player's most preferred object free.
 Let y be your most preferred that the other player has and prefers x to it.
- If you prefer a free object to y, then chose the free object.
- If you prefer y to any free object, choose x -> y. (choose x and offer to trade it for y).

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

Rules are simple.

• (simplest) Equilibrium is just like draft.

- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem

- Rules are simple.
- (simplest) Equilibrium is just like draft.
- Only complications are off simplest equilibrium.
- One only needs to know their ordinal ranking of players to play the on equilibrium strategy.
- Allocation reflects selection order: fair.
- Any item-by-item Pareto Optimal allocation is a sincere outcome of some order of play and vice versa.
- Trading draft positions or trading players after the draft (both occur in sports) will arrive at bundle Pareto Optimality where each team is at least as well off as sincere.

Open Problem