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1 Introduction

This lecture extends the theory of resource exploitation to renewable natural
resources, i.e., resources which exhibit growth. The classic (and most studied)
example of a renewable natural resource is the capture �shery. Here we
consider optimal exploitation of the �shery and the problem of �over�shing�.
In the next lecture we will look at the regulation or management of �sheries
in order to prevent over�shing and move the �shery closer to an optimal
pattern of exploitation.

2 A basic (dynamic) �shery model

Consider a very simple �shery in which there is just one (homogenous) stock
owned by a single �rm (a sole owner). We can de�ne an (instantaneous)
pro�t function, as before, as

� (q (t) ; x (t)) � pq (t)� c (q (t) ; x (t)) ;

where x (t) is the stock size and q (t) is the harvest.
The resource owner�s problem is then to maximise the present value of
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exploiting the resource, which we can write as

max
q

Z T

0

� (�) e�rtdt;

s:t: _x = g (x)� q (t) ;

where the constraint is the so-called state equation, which now explicitly
includes a growth function g (x).
The present value Hamiltonian for the problem is

H (�) � � (�) e�rt + � (t) [g (x)� q (t)] ;

while its current value equivalent is

Hc (�) � � (�) + � (t) [g (x)� q (t)] :

The �rst order necessary conditions for an optimal solution can be sum-
marised as

Hq = 0 ) �qe
�rt = �;

_� = �Hx ) _� = ��xe�rt � �g0 (x)
and

_x = H� ) _x = g (x)� q (t) ;
in the case of the present value Hamiltonian, or

Hc
q = 0 ) �q = �;

_�� r� = �Hc
x ) _�� �r = ��x � �g0 (x)

and
_x = Hc

� ) _x = g (x)� q (t) ;
in the case of the current value Hamiltonian.
Notice that the conditions for q� are essentially the same, except that

Hq = 0 is in present value terms, whileHc
q = 0 is in current value terms. Also,

as with any Lagrangian, taking a derivative with respect to the multiplier
(shadow price) just returns the constraint, in this case the state equation.
Thus we have _x = H� = Hc

� = g (x) � q (t). The conditions for x� are a
bit di¤erent however, when we move from present value to current value: we
have _� = �Hx but _� � r� = �Hc

x (in the previous lecture we saw how the
current value condition could be derived from the present value condition).
You should be able to see, though, that if r = 0 the conditions will be the
same.
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Let�s just focus on the current value conditions

�q = �

and
_� = �r � �x � �g0 (x) )

_�

�
= r � �x

�
� g0 (x) :

These should, by now, be fairly familiar, except for the inclusion of the
marginal growth rate g0 (x) in the condition for the evolution of the shadow
price. These conditions state that, for an optimal exploitation path, current
marginal pro�ts should be equal to the shadow price of the stock, while
the shadow price should be changing at a rate which depends upon (1) the
interest rate, (2) the relative impact on pro�ts of a change in the stock size,
and (3) the marginal growth rate of the resource.

3 Sustainable �shery exploitation

When we were dealing with non-renewable resources, it didn�t really make
any sense to talk about sustainable exploitation. If a resource doesn�t exhibit
growth, then extracting the resource inevitably depletes it. With renewable
resources, however, it should be possible to exploit the resource in such a
way that exploitation is sustainable (inde�nitely). This would, at least in
principle, appear to be the best way of exploiting any renewable resource.
Let�s assume that our time horizon T extends a long way into the future,

if not to T = 1. Let�s also assume that we have got the �shery into a
sustainable position or steady state, where harvest equals growth and hence
the stock size is neither increasing nor decreasing. A steady state therefore
implies

_x = g (x)� q (t) = 0
and hence

q (t) = g (x) :

It also implies that _� = 0 and hence

r � �x
�
� g0 (x) = 0:

If we substitute �q = � into this expression, we get

r � g0 (x)� �x
�q
= 0;
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or, by rearranging,
r = g0 (x) +

�x
�q
: (1)

Expression (1) is sometimes known as the fundamental equation of
renewable resources. We will return to this later.

4 The growth function

We have so far expressed the growth function in very general terms as g (x),
which we have implicitly assumed to be positive for at least some values of x.
There are many speci�c growth models and these can be very complex if they
take into account, for example, random �uctuations, interactions between
di¤erent species of �sh, migration, or an age-structured population.
The simplest growth model, and one which is often used in simple bio-

economic models, is the logistic growth function. This can be written as

g (x) � x
h
1� x

K

i
;

where  is the intrinsic growth rate of the resource andK is the environmental
carrying capacity. The parameter K represents the maximum stock size that
can be accommodated by the environment in which the �sh live, because
of space or food constraints, for example. A (static) plot of g (x) against x
yields a dome-shaped curve where g (x) = 0 at x = 0 and x = K and g (x)
has a maximum where g0 (x) = 0 and hence x = K=2.
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In the absence of any harvesting, in this simple deterministic (non-random)
model, the equilibrium �sh stock will be equal to K. If we reduce the stock
to K=2, however, we can obtain a sustainable (physical) yield equal to the
maximum value of g (x) : This is referred to as themaximum sustainable yield
or MSY. Note that we have assumed that growth is positive for any positive
stock size, i.e., implicitly, there is no minimum viable population. It is quite
possible that there would be a minimum viable population, in which case
g (x) would become negative below a certain x (and the stock would collapse
to zero).
This model of sustainable yield based upon the logistic growth model is

known as a surplus production model, since it models yield (potential harvest)
as a surplus which can be taken while maintaining the stock at a given level.
MSY is sometimes advocated as an appropriate goal for �sheries manage-

ment, but there are problems with the concept of MSY. Firstly, from a purely
biological perspective, MSY only really makes sense in the context of a sim-
ple deterministic model. In the real world, �sh stocks �uctuate considerably
due to environmental in�uences and random behaviour and MSY is there-
fore variable and hard to de�ne. Also, di¤erent commercially important �sh
stocks frequently coexist and are caught together. Since these stocks often
either compete for food or provide food for each other, it may be impossible
to de�ne MSY simultaneously for di¤erent stocks in a multi-species �shery.
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Secondly, from an economic perspective, setting MSY as a target takes no
account of the costs of catching �sh.

5 The static model of �shery exploitation

We can adapt the logistic stock growth model into a simple �shery model as
follows. To begin with, let harvest equal sustainable yield. Then, assume that
we have some reliable measure of �shing inputs or �e¤ort�(say, the number
of vessels) and for simplicity let the �catch per unit of e¤ort�(CPUE) be a
constant proportion of the stock. Formally, we assume that harvest (catch)
as a function of �shing e¤ort can be written

q (e) � �ex;

where e is e¤ort and � is a �catchability coe¢ cient�. If q (e) = g (x), then

�ex = x
h
1� x

K

i
and hence

x = K

�
1� �e



�
;

so that we can express the harvest as a function of e¤ort as

q (e) = �eK

�
1� �e



�
:

Note that the relationship between �shing e¤ort and stock size is implicitly
a negative one.
Next, assuming that the price of �sh is una¤ected by the size of the

harvest (perhaps because many other �sheries supply the same product) we
can simply multiply the harvest by the price to obtain a graph of (sustainable)
revenue against e¤ort. Then pro�ts in the �shery are given by

pq (e)� c (e) ;

where c (e) is the cost of e¤ort.1 Pro�ts are clearly maximised where pq0 (e) =
c0 (e) and a sole owner, would, we assume operate with this optimal level of
e¤ort, which we can label as eMEY since the corresponding yield is often
referred to as the maximum economic yield or MEY. In the graph, the di¤er-
ence between revenues and costs at eMEY is an economic surplus which can
be interpreted as the resource rent.

1Note that c (e) is assumed to include the economic costs of all inputs, including capital.
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Sole ownership of a �shery is very unusual, however. In most �sheries a
large number of competitive �rms are involved and e¤ort will, if permitted,
tend to be attracted into the �shery until economic pro�ts are reduced to
zero, a level of e¤ort which we can refer to as the open access level eOA.
In the graph we have drawn the e¤ort cost curve in such a way that eOA
is much greater than eMEY (which implies a much smaller stock size), but
this would not necessarily be the case. The important point is that the
competitive outcome, where economic pro�ts are zero, may be optimal in
other industries but is sub-optimal in a �shery since all the resource rent has
been dissipated through excessive investment in harvesting capacity (�shing
e¤ort). This is an example of market failure, which can here be attributed
to the lack of a price on the �sh stock itself. In the case represented in the
graph, we also have a relatively depleted stock and reduced harvests, but
remember that, in this model, all points on the revenue curve are implicitly
sustainable.
This �shery model (called the Gordon-Schaefer model) is commonly used

to illustrate the problem of (economic) over�shing in an open access (i.e.,
unregulated) �shery, but remember that it is a static (and long run) model:
no account is taken of the discount rate (which is, implicitly, zero). Never-
theless, it is useful since it highlights the need for a social planner to regulate
or manage the �shery in order to maximise its economic value (and prevent
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stock depletion).

6 The dynamic optimum

We return to the so-called fundamental equation of renewable resources,
which we obtained previously. This was expressed in terms of harvest q
as

r = g0 (x) +
�x
�q
;

but we could easily derive an equivalent expression in terms of �shing e¤ort.
In either case, the fundamental equation states that, to be exploiting the

�sh stock sustainably and optimally, we need to equate the discount rate r
with the marginal growth rate of the stock g0 (x) plus the marginal value of
the stock in relation to the marginal value of harvest (or e¤ort). This ratio
is often referred to as the marginal stock e¤ect (MSE).
If the marginal value of the stock is zero (which could, conceivably, be

the case for strongly schooling or shoaling species) then the MSE is equal to
zero and we would simply have

r = g0 (x) ;

i.e., the discount (interest) rate is equated with the marginal growth rate.
For a positive discount rate, this implies that the optimal stock size would
correspond to the upward-sloping portion of the sustainable yield curve, below
the stock size associated with MSY. Indeed, with a zero MSE, MSY would
only be optimal in the case of a zero discount rate.
If the MSE is positive, this will determine an optimal stock size that is

larger, all else equal. If the MSE exceeds the discount rate, then the optimal
stock size could be where g0 (x) is negative, i.e., on the downward-sloping
portion of the yield curve.
It should be apparent that with a small MSE and a very high discount

rate, the optimal solution might be to rapidly �sh the stock down to a very
low level (where the marginal growth rate is highest). This is equivalent to
disinvesting in the resource. In the case of a very slow growing species, so that
r > g0 (x) everywhere, it might be optimal to deplete the resource entirely.
This is a theoretical possibility for a sole owner, although not, perhaps, for
a social planner who would (we assume) value the resource for its existence,
per se.
The social planner (or sole owner) takes into account the dynamics of the

stock and hence the rule for optimal harvest takes into account the shadow
price of the stock. A single competitive �rm participating in an open access
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(and unregulated) �shery, on the other hand, has no incentive to take ac-
count of the stock constraint (why?) and therefore continues to harvest until
the marginal pro�t from harvesting is zero. This implies excessive levels of
harvest and hence a sub-optimal outcome. If we rearrange the fundamental
equation to

�q =
�x

r � g0 (x)
we can see that, for a sole owner, �q = 0 is implied by a discount rate of
r ! +1. In e¤ect, individual �rms in an open access �shery behave as if
they have an in�nite discount rate. To change this behaviour usually requires
some sort of regulation or management of the �shery. We will look at this in
the �nal lecture.

7 Further reading

Look at HSW, pp.266-283. Conrad, pp.9-16 and pp.32-49, covers similar
material from a discrete time perspective.
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