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both student learning and interest, survey results from Becker and Watts (1995,
1996, 2001) indicate that the transition to technology-based instruction has not
been widely adopted by economics college instructors. According to Becker and
Watts, instruction in the typical undergraduate economics classroom is still based
primarily on lectures, with the chalkboard and text assignments as complements.
This is particularly true of courses in which conceptual ideas and more rigorous
mathematical models are stressed, most notably, the intermediate micro and
macroeconomic theory courses.We believe that the lack of uniformity in
transitioning to technology-based pedagogy stems from an incomplete
understanding of the benefits of technology in addition to a perception that the
start-up costs associated with its incorporation are high. Our paper addresses both
of these issues.

First, we use pedagogical research in economics and mathematics to understand
how technology aids learning and to discuss why some classroom objectives may
be achieved more easily when technology is used to complement lecture material.
Although instructors of economics have begun to incorporate insights from
learning theory into teaching pedagogy (notably Goffe and Sosin, 2005), existing
research in psychology and education has much more to offer when attempting to
assess the benefits of technology. Given the degree to which economic theory has
come to rely on mathematical tools, it follows that the abundance of research in
mathematics education is particularly appropriate. Previous papers on the use of
technology in economics pedagogy have primarily (though not exclusively)
focused on how it can be used to generate solutions to specific problems in
economics (Boyd, 1998 or Cahill and Kosicki, 2000a and 2000b). Our paper expands
the literature on economic pedagogy by linking the conclusions of current research
in mathematics education on the general application of technology to the
literature on active and cooperative learning in economics.

Second, we use the theoretical implications from mathematics and economics
education to illustrate how technology may enhance learning mathematical
concepts in the intermediate economics classes. Because the intermediate courses
rely heavily on mathematical theory, these courses are an ideal place in which to
demonstrate the usefulness of technology in teaching mathematical concepts.
Maple, a symbolic software program, is incorporated in the classroom to reinforce
mathematical principles.We offer teaching tips and suggestions to instructors
implementing this approach in order to increase the probability of a successful
experience and minimise start up costs.

The sections that follow discuss why, when and to what extent using technology
may be beneficial in the economics classroom. First we discuss how and why Maple
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This paper studies the efficacy and motivation for using technology when
explaining mathematical concepts in economics pedagogy. It links practice with
theory by examining the use of technology in light of current literature on active
and cooperative learning in economics in conjunction with extensive research in
mathematics education concerning the effectiveness of technology in teaching.
Suggestions on how to implement teaching strategies with computer technology
are discussed within the context of the computer algebra system, Maple. A variety
of specific applications using Maple technology are provided in an online appendix.

Introduction

Few other disciplines are poised to have their pedagogies so radically affected by
technology. In just 15 years the use of technology as a pedagogical tool in
economics has become ubiquitous due to the increasing accessibility of
information via the web and the plethora of software available for analysing this
information (Walbert and Ostrosky, 1997; Chizmar and Walbert, 1999). Indeed, the
personal computer is primed to become the new economics chalkboard of the 21st
century. Most obviously, the use of spreadsheets in teaching econometrics and
symbolic algebra software in teaching economic theory has allowed instructors to
become more efficient while enhancing the learning experience (Murray, 1999;
Walbert and Ostrosky, 1997).

Although cognitive research in psychology and education suggests that active and
cooperative learning strategies such as those implementing technology enhance
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DERIVE was first released in 1988 by Texas Instruments, but is no longer in
production. DERIVE is a symbolic algebra program with 2D and 3D graphing, but is
compatible only with the Windows operating system. It is a program capable of
supporting prealgebra, algebra, trigonometry, precalculus and calculus courses.
Texas Instruments is currently working on a next generation computer algebra
system. Mathematica, first released in 1988, brought computer algebra into
mainstream use. For 20 years, the creator of this software, Wolfram Research, has
been a consistent leader in computer algebra research. Maple was first developed
by the Symbolic Computation Group at the University of Waterloo in Ontario,
Canada in 1980. Maple was originally released in 1985 by Waterloo Maple, Inc. Maple
and Mathematica have become extremely popular in both industrial applications
and academia. MuPAD was originally developed in 1992 by the MuPAD research
group at the University of Paderborn. However, since 1997 it has been jointly
developed by SciFace Software in cooperation with the MuPAD research group.The
MuPAD kernel is also used in other more general scientific and mathematical
software. It recently replaced the Maple kernel within the software, MathCAD.

Mathematica, Maple and MuPAD are mathematics engines that perform the
symbolic computations fundamental to prealgebra, algebra, trigonometry and
calculus. Each can evaluate, factor, combine, expand and simplify expressions that
contain integers, fractions, and real and complex numbers.They can also be used to
evaluate integrals and derivatives, perform matrix and vector operations, find
standard deviations, and perform many other more complex computations. In
addition, one can create 2D and 3D plots of polynomials, trigonometric functions
and exponentials, and you can create animated 2D and 3D graphics. Mathematica
and Maple incorporate a full high-level programming language that interfaces to
other languages and with Excel. (Maple interfaces with C, Fortran, Java, Matlab, and
Visual Basic.) All three of these CAS packages run on most all main operating
systems including Windows and MAC-OS.

Shone (1997) states that, for the mathematical economist, Mathematica is highly
sophisticated and able to solve a broad range of problems. However, he
acknowledges that Maple is easier to use. According to Pattee (1995), because
Maple and Mathematica are used extensively in research and industry, there is a
wealth of literature, sample worksheets, advice and hints available to users (Abell
and Braselton, 2003, 2005). Although both programs offer similar benefits, Maple is
generally recognised as more efficient in solving differential equations, while
Mathematica’s interface is often considered preferable for demonstrations.
However, it is important to note that competition in the past decade has driven
each product to strive to perfect any perceived shortcomings.Thus, for the vast
majority of users, today the two products are virtually interchangeable.
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software is appropriate for intermediate economic theory courses.We then
examine research in economic pedagogy in more detail.This literature suggests the
importance of using active or cooperative learning techniques in order to
accomplish learning objectives in the intermediate theory courses.This is followed
by a discussion of the role of technology, particularly Maple, in teaching
mathematical concepts. Economics theory depends on the language of
mathematics.This creates an important and obvious link between economics
pedagogy and research in mathematics education.

The concluding section offers suggestions on how to integrate technology in order
to maximise its effectiveness. An appendix containing the Maple code and colour
output from eight specific examples in both intermediate microeconomics and
macroeconomics is available on the author’s website,
http://faculty.bellarmine.edu/fraymond/teaching.asp.1

Why use Maple as a pedagogical tool in economics?

Comparison to other software

Maple is a symbolic computation, or computer algebra system (CAS) that can solve
systems of algebraic equations, perform numerical computations, and provide 2D
and 3D colour graphics. Maple graphics and code can be embedded directly into
Microsoft Word or Excel.

It is natural to wonder why one would choose Maple over other computer algebra
systems and to ask how Maple software compares to other software.The
development of computer algebra systems began in the late 1960s with the
software becoming available for public use in the early 1970s (Fateman, 1972).
Some of the earliest CAS software, such as BERGMAN[1] and REDUCE, is still in use
today. Many computer algebra systems were developed with specific, though
limited, capabilities. However, there are a number of computer algebra systems that
perform a wide range of mathematical computations and provide
multidimensional graphics.

Among the most versatile CAS software are DERIVE, MuPAD, Mathematica and
Maple.2 There are also choices such as MATLAB, designed primarily for numerical
computations, which can be interfaced with Maple to provide a complete CAS
package.These computer algebra systems tend to be used in academic settings
and strive to be user-friendly. Because of the ability to perform symbolic
manipulations, to find complicated algebraic solutions with high degrees of
accuracy and to provide high-quality graphics, these packages are used when
teaching algebra, trigonometry and calculus.
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offering lower academic prices. In addition, Maple is also equipped with an
ever-evolving statistical package.Thus, the choice of Maple as the pedagogical tool
for solving mathematical economics problems is a reasonable one.

In addition, there are significant advantages to using symbolic computation
software instead of spreadsheet programs such as Excel, Lotus and QuatroPro.
Spreadsheet programs are specifically designed to manipulate numerical data so
they cannot generate purely algebraic results. Because spreadsheet programs are
restricted to numerical methods and solutions, symbolic manipulators such as
Maple and Mathematica can be more versatile, even when finding numerical
solutions. Additionally, Saunders (1998) states that new learning is more efficient if
linked to material students have previously learned. Economics students are often
exposed to Maple in calculus, further enhancing the efficacy of the software.

Despite its advantages, symbolic computation software also has some limitations. It
is limited in its ability to solve relatively complicated non-linear systems, algebraic
solutions are not always presented in simplified form, and a spreadsheet may be
more efficient if one’s primary goal is to generate large sequences of numerical
solutions based on a repetitive algorithm.These limitations can sometimes be
significant when relying on symbolic computation systems for research purposes.
Nevertheless, symbolic computation systems are sophisticated enough to handle a
wide variety of applications, including those most often found in the
undergraduate curricula in mathematics or mathematical sciences, so that Maple
can be a powerful undergraduate pedagogical tool when appropriately used.

Technology for a purpose

Recently, many colleges and universities have encouraged instructors to integrate
technology more extensively in the classroom. In some courses such as statistics or
econometrics the benefits of technology are clear. However, in other courses such
as intermediate economic theory, where the benefits are less obvious, the push for
technology can also create a ‘perverse incentive’, as it naturally leads one to ask if
the technology is to be incorporated for its own sake or for some other reason.
Contrary to its intended outcome, using technology without a specific pedagogical
purpose can actually reduce efficiency by making the classroom experience less
focused and more confusing. Because teaching technology requires the sacrifice of
time typically allocated to more traditional (and not necessarily less important)
examples or conceptual issues, it is especially imperative that instructors have a
specific objective in mind, as well as an efficient method of integration.

Intermediate economic theory has traditionally been taught conceptually, rather
than computationally. Students learned course material by engaging in passive
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Tonisson (1999) compared the software packages DERIVE, Maple, Mathematica, and
MuPAD.The purpose of this paper was to compare aspects related to one-step and
step-by-step solutions using the four different CAS packages. In one-step problems,
Maple and Mathematica found correct solutions in each example, while DERIVE and
MuPAD were successful in most, but not all, examples. In step-by-step problems,
each software package approached the selected problems differently and provided
varying degrees of information for students. Maple and Mathematica were found to
address step-by-step solutions more explicitly than DERIVE and MuPAD. Maple
includes some information about step-by-step solutions in the student package
introduction and Mathematica has a demo-file on step-by-step differentiation. In
general, CAS packages hesitate to ‘show’ steps because they use other algorithms
than those used in student textbooks and the intermediate results may be
confusing for students (Tonisson, 1999).

Seven CAS software packages, AXIOM, DERIVE, MACSYMA, Maple, Mathematica,
MuPAD, and REDUCE, were compared in ‘A Critique of Mathematical Abilities of CA
Systems’ (Wester, 1999).This was a comprehensive comparison of seven all-purpose
CAS packages and their performance on 542 mathematical problems.The problems
were divided into 30 different sections and presented in order of increasing logical
difficulty. For each problem, the article summarised a variety of issues including
whether each of the CAS software packages (1) attempted to get a solution, (2) was
able to get a solution after one hour of CPU time, (3) produced a small error in a
determined solution, (4) had some success, but also some mistakes, (5) had an
answer that was mostly wrong, but still had a few positive elements, or (6) had
complete success (Wester, 1999). Although the seven different CAS packages had
varying degrees of success across the different levels of mathematical problem
solving, Maple, Mathematica, and MuPAD showed consistent levels of success with
Maple and Mathematica showing the highest level of consistency in ability to solve
problems successfully.

In sum, the development of CAS software has been on-going for more than three
decades. Many are compatible with both Windows and Mac operating systems (and
other systems) and most provide the symbolic manipulation to facilitate problem
solving needed in prealgebra, algebra, trigonometry and calculus courses, and
provide the graphing capabilities to illustrate 2D and 3D images. Maple and
Mathematica are each other’s primary competitors and are the current market
leaders in CAS software. In comparisons, these two CAS software packages have
been shown to be the most consistent and successful in solving a wide range of
problems. Maple and Mathematica appear to perform similarly and it would be
reasonable to choose either for academic applications. Early on, Waterloo Maple
appears to have focused a bit more on the academic market, gaining popularity by
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conceptually, and (iii) illustrate solutions to specific problems involving theoretical
or conceptual ideas. It is especially beneficial if its use facilitates understanding of
material that in the past was considered too complex for a particular audience.
Note that this point illustrates an important difference between the benefits of
using Maple in economics as compared to mathematics pedagogy. As indicated in
the mathematics education literature, symbolic manipulation systems allow the
mathematics instructor to spend less time on computations and more class time on
conceptual issues (enhancing quantity). However, since economics pedagogy has
traditionally fostered a conceptual approach, the current trend is to augment
pedagogy with more examples that promote active learning (enhancing quality).
Thus, both disciplines may use Maple as an active learning tool in order to enhance
the conceptual component of current pedagogy, although for different reasons.

Integrating technology with pedagogy

One can implement Maple as a pedagogical tool in a typical intermediate
microeconomics course (not calculus based) as long as the students are familiar with
the basic notion of a derivative.Thus, a scientific or business calculus course could be
taken concurrently or as a pre-requisite. In our experience, students had typically
completed a one semester course in either business or scientific calculus before
enrolling in intermediate economic theory, although there was an occasional
student taking these courses concurrently. Early in the course a discussion on the
importance of ‘marginal’ concepts in economic theory was used to motivate and
illustrate the use of a derivative.The general definition of a derivative was derived in
a simple example, followed by examples illustrating the shortcuts used for
differentiating powers and logarithms.This required approximately 45 minutes of
class time. After completing constrained optimisation in consumer choice, the
instructor introduced the concept of the Lagrangian, as an extension of the earlier
discussion on derivatives, requiring another 30–40 minutes of class time.

Implementing Maple into an intermediate theory classroom also requires two or
three sessions in a computer classroom. Although it is most effective if each
student has his own computer, pairs of students may share. At or just prior to the
start of the session, the instructor must illustrate the connection between the
economics studied in class and its mathematical representation on the blackboard.
Afterwards, the instructor must translate what he has demonstrated into Maple
code on the blackboard.The students are initially requested to open a new Maple
window and simply copy a template as given and run the program.This familiarises
the student with Maple syntax and allows them to witness the execution of the
program while visualising the mathematical concept. Afterwards, the instructor
may give either verbal or written instructions to the students, directing them to
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activities such as note taking and reading. However, the recent pedagogical
literature on active learning has prompted instructors to focus more fully on
problem-solving approaches. Because it is difficult to construct a wide variety of
conceptual problems for the students to complete, there is a natural incentive to
develop more computational problems.This has stimulated further discussion
about the relative importance of teaching the underlying mathematics, particularly
in intermediate microeconomics. In fact, more colleges and universities generally
appear to be moving toward requiring one semester of calculus as a prerequisite
for intermediate microeconomics.

The debate is probably most relevant for intermediate microeconomics because
the majority of the course is based upon the concept of constrained maximisation
as applied to consumer choice and production theory. One benefit from using
technology for solving algebraic systems is particularly evident in the following
example. In consumer choice, the preferences of a representative consumer are
defined by a utility (objective) function, f = f(x, y).The consumer maximises utility
by choosing appropriate levels of goods x and y with respect to a linear income or
budget constraint, B = Pxx + Pyy where Px and Py where are respective prices. In
most cases, f is assumed to be increasing, concave and at least twice differentiable.
Utility is constant along any indifference curve in the indifference map, the set of
contour lines associated with f. Since the previous assumptions imply that these
indifference curves are concave, utility maximisation occurs where the budget line
is tangent to the indifference curve furthest from the origin.The producer problem
is defined similarly, with one important conceptual difference. Production is defined
by the function f = f(x, y) where x and y are inputs.The production function has
many of the same mathematical properties as a utility function. Again, f is assumed
to be increasing, concave and twice differentiable. Costs are defined by Pxx + Pyy =
C where C is total cost and Px and Py are the respective prices of inputs x and y.The
conceptual difference distinguishing production is that the contour lines
(isoquants) of represent production constraints.The goal is to minimise costs
(objective) subject to a convex production constraint.To the perceptive student,
this appears to be the reverse of the consumer problem since the contour lines
make up the constraint set. However for the average student, distinguishing
between the objective and the constraint can cause confusion and lead to
misunderstanding, even if the fundamentals of the consumer problem were initially
grasped.This subtle, yet conceptually important distinction becomes much more
apparent when Maple is used to demonstrate the mathematics.

We have demonstrated that there are at least three principal motives for
incorporating Maple as a pedagogical tool.These include the ability to (i) enhance
active and cooperative learning, (ii) illustrate subtleties that are difficult to explain
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Saunders’ (1998) review of the learning literature developed in psychology and
education supports the view that problem-solving skills are enhanced with
opportunities for the students to actively apply concepts. He begins with four
generally accepted propositions about learning. First, the human mind has a limited
capacity to process information.This implies that focusing on a few concepts rather
than a broad spectrum of topics is more effective. Second, new material is learned
most effectively when it is linked to prior experience.Third, motivation is an
important factor in determining how well the material is absorbed, so it is
important that concepts appear relevant in order to stimulate and maintain
interest. Finally, visual learning experiences are more effective than verbal learning
experiences, so learning is more efficient if visual aids are included in pedagogy.
Based on these propositions, Saunders defines learning as the acquisition and
retention of knowledge and habits of thought in a way that permits them to be
employed in a useful way after the initial exposure has been terminated. He argues
that thinking like an economist requires that students analyse problems
independently, which involves three stages of learning: acquisition, retention and
transfer. Acquisition or learning new material is most efficient when the student is
clear about what they are supposed to learn and the new material is linked to
material the student previously learned.3 Retention occurs as the student
remembers the material and is most efficient when the material is effectively
acquired.Transfer or learning to apply the material is accomplished by pedagogical
tools that emphasise the characteristics that are common to particular types of
problems.4

Several pedagogical implications follow from Saunders’ research of learning theory.
In order to enhance acquisition as well as retention, lectures should be
complemented with active5 (Becker, 1977) and cooperative6 learning techniques,
repetition and quick feedback to the student.Visual aids should be used when
possible. In order to promote the student’s ability to transfer or apply the material,
basic concepts should be repeatedly interpreted and applied to a variety of
situations in class and in exercises so that the student perceives the usefulness of
the general principles. Exercises should focus on interpretation and application
rather than memorisation or computation.

Salemi (2002) provides a particularly strong case for active learning techniques by
outlining numerous benefits that stem from their inclusion in the classroom.7

Benefits include a deeper understanding of course concepts as students work
harder in class and collaboratively revise their thinking to make ideas work versus
passively interpreting an instructor’s lecture. During this process, instructors and
students both benefit from feedback. Students receive immediate information from
instructors and peers on how well they understand concepts. As instructors monitor
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alter the template.This process requires students to recognise the specific nature of
the amendment and implement the change. For example, when teaching
consumer theory, students must recognise the appropriate template changes to
make in response to variations in preferences or prices.This reinforces the
economic concepts of the utility function and the budget constraint, while also
allowing students to see how mathematics provides a specific solution to the
problem. Complementing lecture material with Maple technology increases the
ability to make subtle conceptual differences more evident.

Student reaction to the use of Maple technology was initially mixed, but became
increasingly positive as familiarity with the software grew. Although some
apprehension was expressed when the first Maple project was assigned,
introducing the software in the computer classroom and providing two to three
hard copy example-templates for reference was helpful in building confidence.
Once the assignments were complete, students expressed that they better
understood the importance of constrained optimisation in economics.Teaching
evaluations indicated that the students recognised the Maple exercises as no less
important than any other portion of the course.The students verbally
communicated that the exercises were most helpful as a way to deepen their
understanding of challenging theoretical concepts.This is consistent with the
criteria that Salemi (2002) uses for selecting topics appropriate for active learning.
In particular, he suggests that the topics be relatively important as active learning
strategies require more class time than alternative techniques, and also that they
involve more difficult concepts.

The importance of active learning techniques in accomplishing
learning objectives in intermediate theory

Learning theory and the goals of economic education

As Siegfried (1998) suggests, most economists would agree that the most
important goal of economics education is to enable students to develop the ability
to ‘think like an economist’.This involves the development of problem-solving skills
that stress analytical reasoning in order to understand economic relationships, as
well as creative skills which enable the student (1) to pose questions, (2) to use
appropriate tools and data to answer those questions, and (3) to explain
unexpected empirical results.This type of thinking is facilitated by providing
numerous opportunities for students to apply economic concepts to a variety of
new situations so that they learn how ‘to do’ economics as well as courses which
increase both the breadth and depth of economic knowledge and its relationship
to other disciplines.
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The role of technology in understanding mathematical concepts

The growing importance of technology in mathematics education

Because economic theory relies on mathematics as a foundation for economic
reasoning, it is helpful to investigate the role of technology in mathematics
education. During the 1980s, the need for change in pedagogical practices in the
teaching of mathematics, science, and technology was recognised.Three U.S.
documents (National Commission on Excellence in Education, 1983; National
Science Board Commission on Precollege Education in Mathematics, Science, and
Technology, 1983; National Research Council (NRC), 1989) were paramount in
reforming the way mathematics and science was taught.The imperatives
developed in these reports emphasised greater reliance on problem-solving
approaches and the incorporation of more technology to assist in implementing
these goals.The NRC further emphasised that increased use of technology within
society will necessitate a greater development of mathematical ideas and students’
ability to think critically and solve problems.The implication for mathematics
education was a change in focus with an emphasis on developing the ability to
apply skills and seek creative solutions to meaningful tasks rather than memorising
and performing a specific set of skills.

In its Principles and Standards for School Mathematics (2000), the National Council of
Teachers of Mathematics (NCTM) describes the standards that should permeate the
mathematics curriculum. Underlying these standards are six principles which
include the technology principle.The technology principle states that ‘technology is
essential in teaching and learning mathematics; it influences the mathematics that
is taught and enhances students’ learning. As essential tools for teaching and
learning, calculators and computers provide visual images of mathematical ideas,
facilitate organising and analysing data, and compute efficiently and accurately.
Further, when such tools are available, students can focus more on mathematical
process such as decision-making, reasoning, and problem solving (p. 24)’.

During the past two decades, technology has changed mathematics education in
three important ways (Van de Walle, 2001). First, some mathematics taught
previously is now obsolete. Second, in many cases, we can teach mathematics more
effectively with technology.Third, and probably most important, some topics that
were previously inaccessible to undergraduate students with limited training in
mathematics can now be made accessible to students in meaningful ways.
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class discussions, they can more effectively guide future discussions to address
students’ needs. Additional advantages include the ability to address a wider range
of student learning styles so that the effectiveness of class time is increased. Salemi
argues that active learning works well in classes comprised of slow and fast learners
because the faster learners can help explain concepts to the slower learners as class
collaboration occurs.This peer interaction is also helpful in teaching students critical
skills as ‘they learn to listen critically, to question what they do not understand and
to challenge when they disagree (p. 728)’. Applying material with active learning
techniques increases the likelihood of positive student attitudes about learning by
showing the relevance of economics, by motivating students to assume greater
responsibility for their learning and by creating incentives to be more prepared to
participate. Finally, Salemi argues that active learning classes are more interesting to
teach, as classroom discussions are less likely to be limited to preconceived agendas,
allowing for more novel approaches.

Intermediate economic theory and active learning

The intermediate theory courses are central in attaining the goals of the economics
major.The objectives include the development of an appreciation for advanced
economic thinking as well as the ability to frame interesting economic questions and
to use economic analysis to evaluate them (Davis and Erekson, 1998). It is particularly
in these courses that students should learn how economists do economics, so that
the development of questions and how they are solved is emphasised.

Siegfried, Butler and Finegan (1998) point out that although the intermediate
courses tend to effectively develop economic theory, they often do not stress the
relevance of the theories by testing them with empirical data, using models to
solve a variety of problems, and evaluating the differences between competing
models.They further state that ‘to achieve the overall objective of the major the
intermediate macro and micro courses must emphasise active student learning,
practice in applying what students learn, and the exercise of critical judgment (p.
68)’. Additionally, depth rather than breadth of subject matter should be stressed so
that students are exposed to a variety of ways in which the same model can be
used to solve problems of increasing difficulty. In order to stimulate learning,
students must actively participate in a process in which a variety of instructional
methods are used. Davis and Erekson (1998) suggest incorporating assignments
with real-world data, requiring more complex research and paper assignments,
asking interpretative questions that require critical analysis of data and using
pedagogical methods which involve active and cooperative learning.
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students also showed significant improvement in their attitude toward
mathematics, were less anxious about mathematics and rated their class as more
interesting. In addition, a higher percentage of students successfully completed the
CIA course compared to the traditional lecture based group.

Mayes (1995) notes that software tools are typically employed as a pedagogical
method to reduce computation and manipulation, visualise algebraic concepts by
relating graphical and algebraic representations of those concepts, and focus on
the utility of mathematics in modelling and solving application problems. He
argues that research shows that students often fail to make the correct connections
between the visual/graphical representation and the analytic/algebraic one. Like
O’Callaghan (1998), Mayes (1995) compares a traditional lecture-based college
algebra course to an experimental algebra course stressing active student
involvement and the use of the computer. He found that the experimental group
had significantly higher scores on inductive reasoning, visualisation and problem
solving while demonstrating an equivalent level of manipulation and
computational skills.

Additional benefits of technology may include more cooperation among students.
Rather than making the teaching and learning episodes more solitary, some
researchers argue that technology can enhance collaborative learning. Miller and
Castellanos (1996) find that technology facilitates collaborative learning based on
their research with high school juniors involved in a university summer
programme. Corroborating prior assertions by the Center for Technology in
Education Staff (1993), the authors suggest the following criteria on which to judge
best practice in the technology-infused classroom: (i) higher level thinking is
stressed, (ii) students help each other learn, and (iii) learning occurs across different
domains and disciplines.These criteria are very closely connected to the
characteristics of collaborative learning practices.

Maple as a pedagogical tool

Several research endeavours specifically discuss the computer algebra system
Maple as a tool for enhancing pedagogical practices in an undergraduate calculus
class (e.g. Boyce and Ecker, 1995; Hillel, 1992; Judson, 1990). For example, Boyce and
Ecker (1995) find that the incorporation of Maple in a computer-intensive calculus
class had a substantial impact both on the mode of instruction as well as course
content, the latter being shifted toward visualisation, conceptual understanding,
modelling, and higher-level problem solving.They also suggest that the use of
Maple eliminates the necessity of framing class demonstrations and homework
problems to teach students how to carry out hand computations.This allows
classroom instructors to focus on the rationale for performing these tasks and on
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The effectiveness of technology as a pedagogical tool in mathematics

Many research efforts have examined the integration of technology into the
teaching and learning of mathematics.These studies support the hypothesis that
technology can enhance learning and they suggest ways in which pedagogical
practices may be augmented in order to facilitate the use of technology. In
summarising the impact of technology on mathematics education, Kaput (1992)
discusses the pedagogical benefits derived from the use of calculators and
computers in the mathematics classroom.These benefits include a richer
problem-solving environment as more time can be devoted to conceptual
understanding rather than skill development, the graphical advantage of
computing utilities, in addition to the potential for a deeper understanding of
algebraic ideas.

Multiple studies have provided empirical support for the infusion of technology
into the mathematics classroom.These studies typically use quantitative methods
to evaluate differences in learning mathematics by comparing a control group in a
traditional classroom using lectures as the primary pedagogical practice to an
experimental group in a technologically-intensive classroom using a computer
algebra system. For example, three studies (Hawker, 1986; Heid, 1988; Judson, 1988)
found evidence that students using computer algebra systems perform as well as
or better than students in traditional business calculus courses. In a broader study,
the performance of university students taught engineering calculus using a
computer algebra system was compared to the performance of students using
paper-and-pencil computations (Palmiter, 1991). Both groups received lecture as a
primary means of instruction throughout the semester. However, after five weeks,
the computer algebra system group also spent time engaged in active learning
with computer-oriented labs. Empirical results indicated that students who used
the computer algebra system scored higher on tests covering both their
conceptual knowledge as well as their ability to do computations. In addition,
student surveys at the end of the semester indicated that 85% of those in the
computer algebra system section were confident in continuing in the calculus
sequence compared to only 69% of the traditional group. Finally, 95% of the
computer algebra system section indicated they would sign up for a course with
computer algebra systems again and 43% indicated an improvement in attitude
toward mathematics and computers.

O’Callaghan (1998) finds similar results in a study of students’ conceptual
knowledge of function when he compares students in a traditional college algebra
class with students in an experimental Computer Intensive Algebra (CIA) class. He
found that the CIA students achieved a better overall understanding of functions
and were also better able to model, interpret and translate information.The CIA
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enhance the ability of students to more effectively learn mathematics in
economics.While most previous papers on the use of technology in economics
provide examples of how technology can be used in economics pedagogy, the
primary focus of our paper is to examine the rationale and conditions under which
the implementation of this type of technology may enhance learning.The
examples from intermediate economic theory are provided to illustrate how
implications from education research in economics and mathematics might be
applied in the classroom.

We close with some caveats for practitioners. As an active learning technique, the
primary benefit of technology is that it enhances the ability of the student to
transfer new material to a variety of situations so that analytical and critical
thinking skills are fostered. However, opportunity costs exist due to the time and
effort involved in learning how to use the new technology and in designing
implementation strategies. Incorporating more technology often means that less
time is available to fully cover other topics. As both our experience and Salemi
(2002) suggests, this implies an efficient use of technology should focus on
teaching those topics that are relatively important and difficult to master. Students
are often anxious about the use of mathematics to convey economic logic. In
addition, the prospect of learning a new technology in order to help them grasp
certain mathematical concepts within economics can initially appear to be twice
the trouble. However, it is our experience that although students may at first
question the wisdom of such an approach, they come to see its value by the time
the course is completed, provided certain pitfalls are avoided. 8

Experience has shown that there are several conditions which maximise the
effectiveness of using technology in order to facilitate the assimilation of
mathematical concepts in economic theory. First, the instructor should intuitively
explain the mathematical concept that is to be integrated. General examples that
enhance conceptual understanding should be used rather than restricting the
opening discussion to examples related to economics so that students see that the
economics examples are part of a larger concept.This facilitates acquisition and
retention of the new mathematical concept. For example, constrained maximisation
involves contour lines such as those found on a topographical map with which
most students are familiar.The notion that indifference curves and isoquants are
conceptually identical to these contour lines can be introduced later once the
students have connected the mathematical concept with something previously
learned.
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the conclusions that can be drawn from results. It also enables more interesting
applications to be considered, placing greater emphasis on how problems are
modelled. Mathews’ (1990) report of using Maple to teach Riemann sums illustrates
the efficiency of Maple in obtaining more precise solutions, versus extended
hand-computed calculations where students often lose sight of the goals of the
exercise. Similarly, Judson (1991) found that using Maple technology in a calculus
lab reinforced basic concepts, allowing students to achieve a deeper understanding
and making the learning process more enjoyable. Enthusiasm was high, creating a
pleasant, relaxed and spontaneous atmosphere. Students felt challenged, but most
could work independently. Galbraith and Pemberton (2001) also found a strong
correlation between confidence and motivation after integrating Maple into
undergraduate mathematics courses in Australia. Positive attitudes as well as an
expanded range of student-generated questions significantly increased when
students learned with Maple.

In an analysis of technologies, Alkhateeb (2002) compared the achievement,
attitudes toward success in mathematics and mathematics anxiety of college
calculus students using Maple with students using a graphing calculator. Although
his results showed no significant differences in achievement between the groups,
students using the computer had a more positive attitude and experienced less
anxiety. Like Boyce and Ecker’s (1995) study, the use of Maple had a substantial
influence on the mode of instruction and course content.

Finally, research suggests that Maple is among the best software packages to use in
the mathematics classroom (Ponidi, 1999). In a comparison of numerous software
packages used to solve partial differential equations problems, Ponini concludes
that Maple is most effective in solving, comparing and visualising numerical and
exact solutions. He notes an increase in student enthusiasm, more active
involvement in group and individual assignments, as well as new perceptions
about modelling, solving, visualising and interpreting the partial differential
equations problems.

Conclusions 

In summary, our paper suggests the importance of incorporating technologies such
as Maple in the economics classroom to enhance teaching mathematical concepts.
The benefits of this teaching practice are theoretically motivated by merging the
current literature on active and cooperative learning in economics with extensive
research on the efficacy of implementing technology in mathematics education.
We find that both branches of research have similar implications for economics
pedagogy: that is, active learning activities in general, and technology in particular,
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Appendix

We provide eight examples from intermediate microeconomic and macroeconomic
theory.The first example illustrates utility functions and indifference curves.The
second illustrates consumer maximisation.The third represents the producer
problem of cost minimisation.The last example demonstrates how Maple can be
used to solve for Keynesian macroeconomic equilibrium.These examples are
available in colour via the web, http://faculty.bellarmine.edu/fraymond/
teaching.asp.

While students may grasp the concept of an indifference curve, they often have
difficulty envisioning a single indifference curve as part of an indifference map.This
first example can be used to familiarise the student with the basic syntax of Maple
while depicting the indifference curve as a contour line defined by {x, y} such that
f(x, y) = k where k is a real-valued constant. Note that in the following examples,
Maple code is preceded by the ‘>’ symbol. One may include comments by omitting
this symbol.

Example 1

Graph of Cobb-Douglas Utility:The Indifference Map
> restart;
> u:=3*x^(2/3)*y^(1/3);

> plot3d(u,x=0..100,y=0..100,labels=[“x”,”y”,”utility”],title=
”Figure 1: Indifference Map”,axes=boxed,thickness=4);
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Second, as new material is explained, the examples must be simply stated, geared
to familiarise the student with basic commands and code. Allow students to make
small changes and re-execute the program.

Third, create assignments that allow students to work from a template, requiring
that they make appropriate changes in key components of the model.This will
facilitate an understanding of how the variables are interrelated as well as their
impact on the overall model.

Fourth, use class time judiciously.The focus should move quickly to the economic
problem being studied, and how the mathematics can be used to express the
nature of the problem and lead to a solution.The technology is merely a conduit.
The goal is not to create master programmers, but to allow students to use
mathematics to solve a familiar economic problem. Remember that the motives for
employing this technology in economics courses may differ from those in
mathematics.

Finally, it is very helpful (though not necessary) if many of the students have already
been exposed to the technology in courses in other disciplines such as
mathematics, thereby connecting new information to previously learned material
and increasing the ability for acquisition and retention to occur.

Using this procedure makes it possible to use technology such as Maple to illustrate
and explain new and relatively complex mathematical applications is as little as two
or three sessions in a computer classroom. If learning the technology becomes an
obstacle, either because it requires extensive use of class time or because students
do not possess sufficient skills, the technology ceases to be effective. In these cases,
significant opportunity costs may prohibit its incorporation. However, if the
technology is effectively applied, research in mathematics education as well as the
research on active and cooperative learning strategies in economics is consistent in
suggesting that it can be very effective as a pedagogical tool.

Again note that colour examples are available in the online appendix,
http://faculty.bellarmine.edu/fraymond/teaching.asp. Although the authors hope
that readers find the examples in the appendix useful, the primary contribution of
this research is to answer why, when and to what extent this technology may be
useful. Our findings suggest that economists should become more familiar with
related research in other disciplines in order to gain additional insight concerning
appropriate applications of technology in economics pedagogy.

Figure 1: Indifference Map
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Type in the amount in the budget, M.
> M:=20;

> Mo:=p[x]*x+p[y]*y-M;

Set up the Lagrangian.
> L:=u-lambda*(Mo);

Find the first order condition of the Lagrangian with respect to x.
> Diff(L,x);

> Lx:=value(%);

Find the first order condition of the Lagrangian with respect to y.
> Diff(L,y);

> Ly:=value(%);

The following solution (soln) is the optimal consumer bundle.
> soln:=solve({Lx=0,Ly=0,Mo=0},{x,y,lambda});

> umx:=eval(u,soln);

The following value is the maximum utility level, indicative of successful consumer
optimisation.
> umax:=evalf(umx);

Next we specify the budget constraint by defining the budget constraint as a
function of y in terms of x and income.
> xint:=M/p[x];
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Graphing Indifference Curves
> y1:=solve(u=100,y);

> plot(y1,x=0..100,y=0..100,labels=[“x”,”y”],title=”Figure 2:
Indifference Curve for 100 utils”,color=black,thickness=4);

The next example illustrates a solution to the consumer utility maximisation
problem using Lagrange multipliers.The Maple syntax helps one to clearly
distinguish the felicity (function to be optimised) from the budget constraint.

Example 2

Example of Consumer Optimisation with Quasi-linear Preferences
> restart;
Type in utility function.
> u:=y+x^(1/2);

Type in the price of good x.
> p[x]:=5;

Type in the price of good y.
> p[y]:=7;

Figure 2: Indifference Curve for 100 utils
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the consumer’s utility maximisation problem as the template for the producer’s
cost minimisation problem. Note the slightly more general approach.

Example 3

This program will determine the Minimum Cost with Cobb-Douglas Production.
> restart;
> assume(L,nonnegative);
> assume(K,nonnegative);
> assume(lambda,nonnegative);
>

The Cobb-Douglas Production Function:
> F:=A*L^(delta)*K^(epsilon);

> “Type in values for A, delta and epsilon.”;

> A:=1;

> delta:=2/3;

> epsilon:=1/3;

Type in the wage.
> w:=2;

Type in the rental rate.
> r:=5;

>
Type in the desired output level.
>
> q:=100;

The Cost Function Follows.
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> yint:=M/p[y];

> BC:=x->yint-(p[x]/p[y])*x;

> indy:=solve(u=umax,y);

> indcv:=x->indy;

The graph below illustrates the optimal solution to this consumer problem.
> plot([BC(x),indcv(x)],x=0..xint,labels=[“good x”,”good
y”],title=”Figure 3: Consumer Equilibrium”,thickness=3);

Examine the utility function and the representative indifference curve depicted
here. Can you describe the bias?

Figure 3 clearly illustrates the bias of the quasi-linear utility function towards good y.

Example 3 illustrates the similarities and differences between consumer and
producer theory.The Maple syntax indicates that although they illustrate different
economic concepts, clearly they are both problems involving constrained
maximisation.The similarities and differences become more evident when the
student is requested to make certain changes to the template provided by the
instructor. In order to provide more of a challenge, the instructor may decide to use

Figure 3: Consumer Equilibrium
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> lint:=minc/w;

> kint:=minc/r;

> TC:=L->kint-(w/r)*L;

>
> isoK:=solve(q=F,K);

> isoquant:=L->isoK;

The graph below illustrates the optimal solution.
> plot([TC(L),isoquant(L)],L=0..lint,K=0..kint,labels=[“Labor”
,”Capital”],title=”Production Equilibrium”,thickness=3);

To illustrate that this is indeed the minimum cost, we evaluate the cost of two
nearby points of the same isoquant.
> L1:=eval(L,soln)-.2;

> L2:=eval(L,soln)+.2;
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> C:=r*K+w*L;

>
The output constraint follows:
Note:This becomes a minimisation problem when Qo<=0.
> Qo:=q-F;

> Lag:=C+lambda*(Qo);

> Diff(Lag,L);

> LL:=value(%);

> Diff(Lag,K);

> LK:=value(%);

The following solution is the cost-minimising bundle.
>
> soln:=fsolve({LL=0,LK=0,Qo=0},{L,K,lambda});

>
The following value is the mimimum cost.
> minc:=eval(C,soln);

Figure 4: Production Equilibrium
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> p[y]:=50/8;

Type in the budget amount.
> M:=100;

Write the budget constraints, before and after the increase in the price of x.
> M1:=M-(p1[x]*x+p[y]*y);

> M2:=M-(p2[x]*x+p[y]*y);

Determine the first Lagrangian equation.
> L1:=u+lambda[1]*(M1);

> Diff(L1,x);

> L1x:=value(%);

> Diff(L1,y);

> L1y:=value(%);

Next, determine the Lagrangian equation after the price of x rises.
> L2:=u+lambda[2]*(M2);
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> K1:=eval(isoquant(L),L=L1);

> K2:=eval(isoquant(L),L=L2);

> C1:=eval(w*L1+r*K1);

> C2:=eval(w*L2+r*K2);

Recall that the minimum cost was 512.9927841 < C1 and C2.

In the next example we solve for and demonstrate the Hicksian substitution and
income effects.

Example 4

Hicks Substitution and Income Effects
> assume(x,nonnegative);
> assume(y,nonnegative);
> assume(lambda,nonnegative);

Type in values for A, delta and epsilon.
> A:=1;

> delta:=1/2;

> epsilon:=1/2;

The Cobb-Douglas Utility Function follows.
> u:=A*x^(delta)*y^(epsilon);

Type in the price of good x.We will investigate the effect of a price increase in good x.
> p1[x]:=2;

> p2[x]:=3;

Type in the price of good y.
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Here are the x and y intercepts for the two budget constraints.
> x1int:=round(M/p1[x]);

> x2int:=round(M/p2[x]);

> yint:=M/p[y];

Arange in functional form for the purpose of graphing the budget constraints.
> BC1:=x->yint-(p1[x]/p[y])*x;

> BC2:=x->yint-(p2[x]/p[y])*x;

Solve and graph the two indifference curves indicating utility before and after the
price increase.
> indy1:=solve(u=umax1,y);

> indy2:=solve(u=umax2,y);

> indcv1:=x->indy1;

> indcv2:=x->indy2;

The graph below illustrates the optimal solutions before (red and yellow tangency)
and after (green and blue tangency) the price of x increases.
>
plot([BC1(x),BC2(x),indcv1(x),indcv2(x)],x=0..x1int,y=0..yint,
labels=[“good x”,”good y”],title=”Figure 5: Consumer
Equilibrium”,thickness=4,axes=boxed);
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> Diff(L2,x);

> L2x:=value(%);

> Diff(L2,y);

> L2y:=value(%);

The following solutions (soln1 and soln2) are the optimal bundles before and after
the rise in the price of x.
> soln1:=solve({L1x=0,L1y=0,M1=0},{x,y,lambda[1]});

> soln2:=solve({L2x=0,L2y=0,M2=0},{x,y,lambda[2]});

> umx1:=eval(u,soln1);

> umx2:=eval(u,soln2);

The values for umax1 and umax2 denote the optimal levels of utility before and
after the price increase.
> umax1:=evalf(umx1);

> umax2:=evalf(umx2);
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> Hicksx:=max(Hicks);

> Hicksy:=eval(u1y,x=Hicksx);

Numerically solve for the Hicks substitution and income effects.
> x1:=solve(soln1[3]);

> SubEffect:=x1-Hicksx;

> x2:=solve(soln2[3]);

> IncEffect:=Hicksx-x2;

Next, rearrange format for graphing the Hicksian budget constraint.
> Mg:=p2[x]*Hicksx+p[y]*Hicksy;

> BC3:=x->(Mg/p[y])-(p2[x]/p[y])*x;

The graph below indicates the Hicks substitution and income effects
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To identify the Hicks substitution and income effects for x, look at the choice the
consumer would make if allowed to maintain original utility level at the new price
ratio.
> pr:=p2[x]/p[y];

> u1:=umax1-u;

> u1y:=solve(u1=0,y);

Find the marginal rate of substitution.
> Diff(u1y,x);

> u1slope:=-value(%);

Use the fact that at the point of tangency, the price ratio equals the marginal rate of
substitution in order to find the x and y values associated with the Hicksian solution.
> Hicks:=solve(pr=u1slope,x);

Figure 6: Hicks Substitution and Income Effects for Good x

Figure 5: Consumer Equilibrium
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>
Exogenous Exports
> EX:=600;

>
Imports
>
> IM:=400+0.1*(Y-TAX);

Define the Keynesian Cross
> AGGEXP:=CONS+GOV+INV+EX-IM;

>
Equilibrium GDP for this Model
> GDP:=solve({AGGEXP=Y});

Define Savings
> SAV:=INV+GOV+EX-IM-TAX;

Define Disposable Income
> DISPINC:=CONS+SAV;

Evaluate these parameters with respect to equilibrium GDP.
> eval([Y,SAV,DISPINC],GDP);

> eval([TAX,INV,GOV,IM,EX],GDP);

> p1:=plot([AGGEXP],Y=6000..7000,labels=[“GDP”,”Ex”],title=
”Figure 7, Aggregate Expenditures”,thickness=4,color=blue):
> f:=Y->Y;

> p2:=plot([f(Y)],Y=6000..7000,thickness=2):
> with(plots):
Warning, the name changecoords has been redefined
> display(p1,p2);
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>
plot([BC1(x),BC2(x),indcv1(x),indcv2(x),BC3(x)],x=0..x1int,y=0
..yint,labels=[“good x”,”good y”],title=”Figure 6: Hicks
Substitution and Income Effects for Good
x”,thickness=4,axes=boxed);

Questions

On the graph:
1) identify the original optimal bundle,
2) identify the optimal bundle after the price change,
3) identify the change in good x that describes the substitution effect,
4) identify the change in good x that describes the income effect.
5) Repeat (3) and (4) for good y.

The next four examples come from intermediate macroeconomic theory.The first
example depicts the Keynesian Cross.The second solves the Keynesian IS-LM
model.The final two examples illustrate the Solow model of economic growth,
including the Golden Rule.

Example 5

The Keynesian Cross
> restart;
> assume(Y1>=0,TAX>=0,INV>=0,GOV>=0,IM>=0);
This program allows us to look at nonlinear versions of the model.
>
Government Expenditures and the Marginal Tax Rate
>
> GOV:=1000-0.01*Y;

> TAX:=0.05*Y;

>
The Consumption Function
>
> CONS:=3000+15*(Y-TAX)^0.5;

The Investment Schedule
> INV:=1000+0.1*Y;
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> p1:=plot(IS, Y=85000..90000,r=0..15,thickness=5):
>
>
Given the Money Supply.
> MS:=8500;

Given Money Demand.
> MD:=40+0.1*Y-30*r;

Solve for Liquidity-Money (LM) Curve.
> LM:=solve(MS=MD,r);

>
> p2:=plot(LM, Y=85000..90000,r=0..15,title=”Figure 8: The
Keyesian IS-LM Curves”,thickness=4,color=blue):
> with(plots):

> display(p1,p2,labels=[“Y”,”r”]);

Solve for the Equilibrium GDP and Interest Rate.
Equilibrium GDP:
> eY:=solve(IS=LM,{Y});

Equilibrium Interest Rate:
> er:=eval(LM,eY);
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Example 6

The Keynesian IS-LM Model
> restart;
Government Expenditures and the Marginal Tax Rate
> GOV:=10000;

> TAX:=0.05*Y;

The Consumption Function
> CONS:=8000+.85*(Y-TAX);

The Investment Schedule
> INV:=2000-50*r;

Exports
> EX:=6000;

Imports
> IM:=5000+0.05*(Y-TAX);

Determine the Investment-Savings (IS) Function.
> AGGEXP:=CONS+GOV+INV+EX-IM;

> IS:=solve(Y=AGGEXP,r);

Figure 8: The Keyesian IS-LM CurvesFigure 7: Aggregate Expenditures
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> changek:= sigma*f(k)-delta*k;

changek is the change in effective (K/L) capital.
4) Consumption
> cc:=f(k)-changek-delta*k;

cc is consumption.
> p1:=plot(f(k),k=1..1000,title=”Figure 9: Production and
Consumption”,color=blue,thickness=3):
> p2:=plot(delta*k,k=1..1000, thickness=4):
> p3:=plot(cc,k=1..1000, color=brown,thickness=5):
Production, f(k), is in blue. Consumption is in brown. Depreciation is in red.
> with(plots):
> display(p1,p2,p3);

The final example is an extension of Example 7. It depicts the Golden Rule for
capital accumulation.We derive the steady state level of capital necessary to
maximise per capita consumption over time.

Example 8

The Golden Rule: Determining Optimal Steady State Consumption from the Solow
Growth Model
> restart;
> A:=4;
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Example 7

The Solow Growth Model

Though not essential for this application, the purpose of the inactive code (in black)
is to provide related information and to more clearly reveal how the model is
constructed.
> restart;
1) Define a CRS Production Function.
F:=(K,L)->A*K^.5*L^.5;
Diff(F(K,L),L);
MPL:=value(%);
Diff(F(K,L),K);
MPK:=value(%);
> A:=3;

k:=K/L;
y:=Y/L;
Redefine Production in terms of Relative Capital.
> f:=k->A*k^.5;

2) Incorporate Investment, Consumption and Savings.
Y:=C+S;
C:=(1-sigma)*Y;
c:=C/L;
s:=S/L;
i:=I/L;
Leakages = Injections in Equilibrium.
s:=i;
Let sigma represent the marginal propensity to save.Then, 1-sigma is the marginal
propensity to consume.
c:=(1-sigma)*y;
c:=y-s;
i=sigma*y;
> sigma:=.15;

3) The Capital Constraint
ChangeK:=I-delta*k;
> delta:=.10;

Figure 9: Production and Consumption
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> with(plots):
> Production, f(k), is in blue. Depreciation is red. Savings
is green.
> display(p1,p2,p3);

Notes
1 The examples were originally generated using Waterloo Maplesoft’s MAPLE version 9,

2003. Subsequent versions yield comparable output for these examples.
2 The companion sites for these CAS packages are http://www.sciface.com,

http://www.maplesoft.com, and http://www.wolfram.com.
3 Our experience was consistent with this principle when MAPLE technology was

incorporated into the intermediate microeconomics course. Previous exposure to
MAPLE in earlier mathematics courses facilitated learning of the economic concepts.
Using the technology to focus on a specific concept also made it easier to be more
precise about what students were supposed to learn.

4 Incorporating MAPLE assignments for specific problems simultaneously with the
theoretical concepts on which they were based throughout the semester allowed us
more easily to facilitate transferability as students ‘practised’ economics. As we
discuss below, other benefits of using active learning techniques in class include
immediate feedback to the instructor and students, an increase in collaborative
learning, as well as opportunities for students to revise their thinking, etc.

5 Cameron’s (1998) review of the literature suggests that active learning involves
providing opportunities for students to meaningfully talk and listen, write, read, and
reflect on the content, ideas, issues, and concerns of an academic subject (Meyers and
Jones, 1993, p. xi). Learning is not a spectator sport. Students do not learn much just
sitting in class listening to teachers, memorizing pre-packaged assignments, and spitting
out answers.They must talk about what they are learning, write about it, relate it to past
experiences, and apply it to their daily lives.They must make what they learn part of
themselves (Bonwell, 1992, p.1)

6 Cameron (1998) maintains that cooperative learning requires students to practice, at
a higher level, positive interaction and individual accountability, as well as more
sophisticated group-processing skills…groups work together over a longer period, such
as several weeks or an entire semester, toward a shared goal (Meyers and Jones, 1993, p.
75). She points out that assignments focus on problems that are too complicated or
time consuming for one person to complete during the period over which the
assignment is to be done.

7 Salemi’s comments are based on his discussions with other teachers and his
experiences. His outline provides a succinct summary of why students learn more
effectively when active learning strategies are employed to ‘do economics’. In a
separate paper (2005), Salemi argues that in-class active learning assignments are
superior to out-of-class exercises because they give students an opportunity to
explain their thinking, critically evaluate the thinking of their peers, obtain feedback,
and revise their thinking (p. 49).

8 As Salemi (2002) points out, active learning techniques may not be best for all
students, as some students learn better by listening and then reflecting on lecture
material. However, he argues that the existence of different learning styles is a reason
for more, rather than less diversification.
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> f:=k->A*k^.5;

>
> delta:=.10;

> Diff(f(k),k);

> MPk:=value(%);

> grule:=solve(MPk=delta,k);

The Golden Rule: grule is the optimal steady state level of capital associated with
the highest possible sustainable level of consumption. It is given by the intersection
of the savings (green) and depreciation (red) curves below.

> sigma:=delta*grule/f(grule);

> Sigma is the optimal savings rate that guarantees a maximum
steady state stream of consumption.
> p1:=plot(f(k),k=1..1000,title=”Figure 10: Golden Rule
Production”,color=blue,thickness=3):
> p2:=plot(delta*k,k=1..1000,thickness=4):
> p3:=plot(sigma*f(k),k=1..1000,color=green,thickness=5):

Figure 10: Golden Rule Production
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The Production of
Mathematical Problems:
a Diminishing Marginal
Returns Experiment*

Jose J. Vazquez-Cognet

Abstract

This article presents a classroom experiment to demonstrate several important
production concepts, particularly the critical concept of the diminish marginal
returns to an input. Although this experimental design shares principles with other
variants of diminishing returns experiments described previously in the literature, it
differs from them in two important feature: (1) it is specifically designed for large
enrollment courses, and (2) it introduces the notion of capital as part of the
experiment.

Playing in teams, students recreate a production process where they allocate some
scarce resources (namely time, mathematical problems, students and calculators) to
the production of mathematical solutions. Each round of production is allowed to
change only by increasing labour (students) in marginal amounts while holding
capital (calculators) constant. All teams are facing diminishing marginal returns to
labour once the game is played for three or four rounds. Not only is this experience
useful to introduce students to the nature of the critical concept of diminishing
marginal returns, but with very little effort the instructor can expand the
experiment to include dynamics related to issues of costs and profits.

Introduction

While students are usually excited to move from the abstract world of the theory of
the consumer to the more concrete world of the theory of production, they usually
have difficulties understanding the nature of the relationships in this latter area. For
instance, many of them have problems conceptualising the fact that the
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