Slide 1 of 33

Developments in Economics Education conference September 10-11, 2015

HARD AND SOFT CHOICES? SUBJECT SELECTION BY SCHOOLS AND STUDENTS

Peter Davies^{1,3} & Marco G. Ercolani^{2,3}

University of Birmingham: ¹ School of Education ² Business School ³ Centre for Higher Education Equity and Access

I SUMMARY:

- 1. We present results from a unique dataset on about two thousand students' A-level subject preferences and subsequent choices between ages 16 and 18.
- 2. We found substantive differences between students' A-level preferences and actual choices of 'hard' and 'soft' subjects.
- 3. These differences were strongly associated with falsification of students' expectations of GCSE grades in examinations taken at age 16.
- 4. This suggests that subject choices are open to influence from new information, persuasion and opportunities.
- 5. We found stronger direct evidence of school level effects in choices of Business Studies and Economics than for soft or hard choices as a whole.

II BACKGROUND

- 1. Subject choices in schools matter for future employment, social mobility and the balance of knowledge and skills available for the economy.
- 2. In the UK, social mobility is associated with subject choice through attendance at 'elite' Russell Group universities.
- 3. The relative difficulty of different subjects has received considerable attention in the debate about advanced level (A-level) subject choices at age 16 as these affect entry into UK universities.
- 4. Our study presents a broad comparison between choices of 'hard' and 'soft' choices with a specific focus on two subjects, Economics and Business Studies.
- 5. Russell Group (2011, but not in 2013) categorised Business Studies as a 'soft' subject and Economics as a 'hard' subject.

- 6. This study builds on previous research in several ways.
 - a. First we have unique, full data on students' *intended* subject choices and their *actual* choices and this enables an analysis of differences between intentions and outcomes.
 - b. Second, we have unique data on students' *expected* and *actual* General Certificate in Secondary Examination (GCSE-level) grades in Mathematics and English typically taken at age 16.
 - c. Third we are able to examine differences between schools in the private and state sectors.

- In England judgements applications to university are made on the basis of a tariff system which awards points to grades achieved in different types of A-level examination: A* (140 points), A (120), B (100), C (80), D (60), E(40).
- 8. The problem for each student *i* is to maximise total grade tariff from three A-level grades:

$$\max \sum_{j=1}^{3} g_{ij}^{e}(A_{ij}^{t-1}, SE_{ij}, D_{j})$$

where

 A_{ij}^{t-1} is student *i*'s previous attainment in subject *j* SE_{ij} is student *i*'s self-efficacy (confidence) in subject *j* D_j is the difficulty of subject *j* relative to other subjects. 9. Russell Group universities (2011, 2013) have also expressed their preference for some subjects rather than others:

* *Hard traditional* ('facilitating'): Biology, Chemistry, English Literature, Geography, History, Mathematics, Modern Foreign Languages, Physics.

* *Hard non-traditional* (but not facilitating): Classics, Computer Science, Economics, Law, Music, Non-European Languages, Other Science, Philosophy and Religion, Psychology.

* *Soft:* Art, Beauty, Business Studies, Child Development, Design and Technology, Health and Social Care, Media Studies, Performing Arts, Photography, Physical Education, Sociology, Study Skills, Travel and Tourism.

'Hard' versus 'soft' subject choices

III DATA

We combined data from three sources to create a unique sample of English schoolchildren before and after their transition at age 16 from basic (GCSE) compulsory to advanced (A-level) voluntary education:

- 1. A survey of students' GCSE grade expectations at age 15/16
- 2. School reports of A-level subjects studied when aged 17
- 3. Examination grades and socio-economic background data from the National Pupil Database (NPD).

'Hard' versus 'soft' subject choices

Slide 8 of 33

Table 1: Summary statistics for the four binary dependent variables

	Balanced dataset (1983 obs.):		Unbalanced dataset (2929 obs.):	
Variable:	Mean	St. dev.	Mean	St. dev.
Intends to study Business Studies A-level	0.149	0.357	0.159	0.366
Actually studied Business Studies A-level	0.115	0.319	0.134	0.341
Intends to study Economics A-level	0.221	0.415	0.206	0.405
Actually studied Economics A-level	0.199	0.399	0.188	0.390

Table 2: Stats	for categorical	dependent variable:	'A-level subject	combination'
	0	1	J	

	Bala dat	nced aset	Unbal data	anced iset	
A-level subject combin- ation:	Freq.	%	Freq.	%	Description:
1 Hard NoEc NoBu	706	38.1	1,031	35.2	Neither Economics nor Business Studies AND 70% or more of subjects are hard (i.e. traditional)
2 Soft NoEc NoBu	594	32.1	1,001	34.2	Neither Economics nor Business Studies AND less than 70% of subjects are hard
3 Hard & Eco, NoBu	172	9.3	251	8.6	Economics (not Business Studies) AND 70% or more of subjects are hard
4 Soft & Eco, NoBu	168	9.1	252	8.6	Economics (not Business Studies) AND less than 70% of other subjects are hard
5 Hard & Bus,	120	6.5	218	7.4	Business Studies (not Economics) AND 50% or more of subjects are hard

Peter Davie	s & Maro	co Ercolani	ʻH	ard' versi	as 'soft' subject choices Slide 10	of 33
NoEc 6 Soft & Bus, NoEc	64	3.5	130	4.4	Business Studies (not Economics) AND less than 50% of other subjects ar	e soft
7 Eco & Bus	29	1.6	46	1.6	Economics and Business Studies (samp small for a hard/soft split)	le too
Totals	1,853	100%	2,929	100%		

Table 3: Summary statistics on control variables for balanced dataset

Variable	Obs.	Unique	Mean	Min.	Max.
Individual's Grades					
Expected GCSE Grade Maths [†]	1853	10	7.009	3	8
Expected GCSE Grade English [†]	1853	10	6.859	3	8
Actual - Expected GCSE Grade Maths [†]	1853	11	-0.050	-3	2
Actual - Expected GCSE Grade English [†]	1853	12	-0.206	-3	4
School level variables					
State School	1853	2	0.603	0	1
Peer Effect (normalized school average	1853	44	0.000	-2.26	1.35
A-level point score: $N(0,1)$)					
Demographics					
Male	1853	2	0.512	0	1
White	1853	2	0.763	0	1

Peter Davies & Marco Ercolani	'Hard' versus 'soft'	subject cl	noices	Slide 1	2 of 33
Mother Univ. Graduate	1853	2	0.520	0	1
Father Univ. Graduate	1853	2	0.570	0	1
Mother professional	1853	2	0.484	0	1
Father professional	1853	2	0.671	0	1
Family cultural capital, incl. boo	oks 1853	43	0.000	-3.47	3.03
(normalized: $N(1,0)$)					

[†]GCSE grades are converted to a scale from 8 for an A* down to 2 for an F.

Table 4: Summary statistics on control variables for unbalanced dataset

Variable	Obs.	Unique	Mean	Min.	Max.
Individual's Grades					
Expected GCSE Grade Maths [†]	2866	11	6.900	3	8
Expected GCSE Grade English [†]	2855	11	6.756	2	8
Actual - Expected GCSE Grade Maths [†]	2639	12	-0.083	-4	2
Actual - Expected GCSE Grade English [†]	2620	13	-0.239	-4	4
School level variables					
State School	2931	2	0.615	0	1
Peer Effect (normalized school average	2931	45	0.000	-2.22	1.44
A-level point score: $N(0,1)$)					
Demographics					
Male	2912	2	0.510	0	1
White	2907	2	0.745	0	1

Peter Davies & Marco Ercolani	'Hard' versus 'soft'	subject ch	noices	Slide 1	4 of 33
Mother Univ. Graduate	2583	2	0.518	0	1
Father Univ. Graduate	2561	2	0.568	0	1
Mother professional	2700	2	0.460	0	1
Father professional	2721	2	0.642	0	1
Family cultural capital, incl. boo	oks 2776	44	0.000	-3.60	3.07
(normalized: $N(1,0)$)					

[†] GCSE grades are converted to a scale from 8 for an A* down to 2 for an F.

IV RESULTS

IV.i BINARY LOGIT REGRESSIONS ON BALANCED DATA

Table 5: Marginal effects from Logit regressions studying Business Studies A-level, using balanced data[†]

	(1)	(2)	(3)	(4)	(5)	(6)
	1	All schools	:	Scl Bus	hools offeri siness Stud	ng ies:
Took Business Studies:	Intended to	Actually did	Actually did	Intended to	Actually did	Actually did
Expected GCSE	-0.003	-0.033	-0.033	0.000	-0.037	-0.038
Grade Maths	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$
Expected GCSE	-0.041	-0.031	-0.041	-0.039	-0.034	-0.044
Grade Engl	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$
Actual – Expected			-0.019			-0.024
GCSE Grade Maths			$(0.01)^{**}$			$(0.01)^{**}$
Actual – Expected			-0.032			-0.032
GCSE Grade Engl			$(0.01)^{**}$			$(0.01)^{**}$

Peter Davies & Marco E	rcolani	'Hard' v	versus 'soft'	subject choic	es	Slide 16 of 33
State School	-0.037	-0.041	-0.040	-0.046	-0.074	-0.069
	$(0.02)^{*}$	$(0.02)^{*}$	$(0.02)^{*}$	$(0.03)^{*}$	$(0.03)^{**}$	(0.03)**
Peer Effect	-0.014	-0.045	-0.036	-0.023	-0.045	-0.036
	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$
Male	0.011	0.018	0.010	0.018	0.026	0.017
	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)
White	-0.066	-0.050	-0.047	-0.065	-0.062	-0.060
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Mother Univ. Graduate	0.025	0.019	0.022	0.026	0.020	0.025
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Father Univ. Graduate	-0.058	-0.039	-0.036	-0.078	-0.044	-0.040
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{*}$
Mother professional	-0.010	0.008	0.005	-0.008	0.011	0.007
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Father professional	0.049	0.008	0.009	0.047	0.006	0.009
	$(0.02)^{**}$	(0.02)	(0.02)	$(0.02)^{**}$	(0.02)	(0.02)
Family cultural capital	-0.020	-0.018	-0.017	-0.017	-0.023	-0.022
(incl. books)	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{*}$	$(0.01)^{**}$	$(0.01)^{**}$
Observations	1853	1853	1853	1478	1478	1478
Pseudo R^2	0.0384	0.1365	0.1512	0.0439	0.0995	0.1119

Notes: * p < 10%, ** p < 5%. Standard errors on marginal effects are reported in (parentheses) † Using data restricted to all non-missing observations Table 6: Marginal effects from Logit regressions studying Economics A-level, using balanced data[†]

	(1)	(2)	(3)	(4)	(5)	(6)
	1	All schools:	:	Sch	nools offeri	ng
	-			I	Economics	
Took	Intended	Actually	Actually	Intended	Actually	Actually
Economics:	to	did	did	to	did	did
Expected GCSE	0.068	0.050	0.060	0.085	0.062	0.077
Grade Maths	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Expected GCSE	-0.033	-0.032	-0.043	-0.040	-0.033	-0.046
Grade Engl	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Actual - Expected			0.030			0.045
GCSE Grade Maths			$(0.02)^{*}$			$(0.02)^{**}$
Actual - Expected			-0.022			-0.025
GCSE Grade Engl			$(0.01)^{*}$			(0.02)
State School	-0.072	-0.065	-0.065	-0.070	-0.052	-0.051
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.03)^{**}$	$(0.03)^{**}$	$(0.03)^{**}$
Peer Effect	0.053	0.042	0.042	0.035	-0.003	-0.005
	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.02)^{**}$	(0.02)	(0.02)
Male	0.106	0.126	0.125	0.131	0.171	0.172

Peter Davies & Marco Er	colani	'Hard' v	Slide 18 of 33			
	(0.02)**	(0.02)**	(0.02)**	(0.02)**	(0.02)**	(0.02)**
White	-0.089	-0.045	-0.042	-0.104	-0.059	-0.055
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.03)^{**}$	$(0.03)^{**}$
Mother Univ. Graduate	-0.049	-0.034	-0.035	-0.062	-0.037	-0.040
	$(0.02)^{**}$	(0.02)	(0.02)	$(0.03)^{**}$	(0.03)	(0.03)
Father Univ. Graduate	-0.021	-0.013	-0.014	-0.029	-0.013	-0.015
	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.03)
Mother professional	0.011	0.031	0.029	0.019	0.029	0.028
-	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Father professional	0.056	0.016	0.016	0.064	0.013	0.015
-	$(0.02)^{**}$	(0.02)	(0.02)	$(0.03)^{**}$	(0.03)	(0.03)
Family cultural capital	0.013	-0.003	-0.002	0.015	-0.009	-0.008
(incl. books)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Observations	1853	1853	1853	1488	1488	1488
Pseudo R^2	0.1297	0.1011	0.1039	0.1019	0.0691	0.0729

Notes: * p < 10%, ** p < 5%. Standard errors on marginal effects are reported in (parentheses) † Using data restricted to all non-missing observations

IV.ii MULTINOMIAL LOGIT BALANCED DATA

Table 7: Marginal effects from Multinomial Logit regression for the single dependent variable, A-level subject combination, using balanced data[†]

		Outcon	nes for the	e single de	pendent va	riable:	
			A-Level S	Subject Con	mbination	,	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hard	Soft	Hard	Soft	Hard	Soft	Eco
	NoEc	NoEc	& Eco,	& Eco,	& Bus,	& Bus,	& Bus
	NoBu	NoBu	NoBu	NoBu	NoEc	NoEc	
Expected GCSE	0.155	-0.155	0.051	-0.012	-0.022	-0.017	0.001
Grade Maths	$(0.02)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.00)^{**}$	(0.00)
Expected GCSE	0.069	0.004	-0.024	-0.009	-0.016	-0.014	-0.010
Grade Engl	$(0.02)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)	$(0.01)^{*}$	$(0.01)^{**}$	$(0.00)^{**}$
Actual - Expected	0.096	-0.091	0.022	-0.002	-0.011	-0.011	-0.003
GCSE Grade Maths	$(0.02)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	(0.01)	$(0.01)^{**}$	(0.00)
Actual - Expected	0.027	0.017	0.001	-0.017	-0.019	-0.005	-0.005
GCSE Grade Engl	$(0.02)^{*}$	(0.01)	(0.01)	$(0.01)^{*}$	$(0.01)^{**}$	(0.01)	(0.00)
State	0.109	-0.001	-0.028	-0.038	-0.011	-0.054	0.024
School	$(0.02)^{**}$	(0.03)	$(0.02)^{*}$	$(0.02)^{**}$	(0.02)	$(0.01)^{**}$	$(0.01)^{*}$

Peter Davies & Marco Ercolani		'Hard' v	ersus 'soft	hoices	Slide 20 of 33		
Peer	-0.007	-0.009	0.025	0.025	-0.010	-0.022	-0.001
Effect	(0.01)	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.00)
Male	-0.022	-0.104	0.068	0.048	0.008	-0.009	0.011
	(0.02)	$(0.02)^{**}$	$(0.02)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{*}$
White	-0.026	0.117	-0.032	-0.013	-0.038	-0.002	-0.007
	(0.02)	$(0.03)^{**}$	$(0.01)^{**}$	(0.02)	$(0.01)^{**}$	(0.01)	(0.01)
Mother Univ. Graduate	0.055	-0.038	-0.016	-0.024	0.004	0.012	0.006
	$(0.02)^{**}$	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Father Univ. Graduate	0.025	0.019	-0.000	-0.008	-0.015	-0.019	-0.001
	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)	$(0.01)^{*}$	(0.01)
Mother	-0.041	0.012	0.023	0.002	0.016	-0.014	0.002
professional	$(0.02)^{*}$	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Father	0.002	-0.031	0.009	0.012	0.014	-0.004	-0.002
professional	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Family cultural capital	0.007	0.007	0.006	-0.001	-0.008	-0.006	-0.005
(incl. books)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
Obs	1853						
Pseudo R^2	0.1910						

Notes: * *p* < 10%, ** *p* < 5%. Standard errors on marginal effects are reported in (parentheses) † Using data restricted to all non-missing observations Abbreviations: Hard (A-levels), Soft (A-levels), NoEc(onomics A-level), NoBu(siness Studies A-level), Ec(onomics A-level), Bu(siness A-level) Table 8: Marginal effects from Multinomial Logit regression for the single dependent variable, A-level subject combination, using balanced data[†] and no expectations regressors

		Outcon	nes for the	e single dep	oendent va	riable:	
			A-Level S	ubject Cor	nbination'		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hard	Soft	Hard	Soft	Hard	Soft	Eco
	NoEc	NoEc	& Eco,	& Eco,	& Bus,	& Bus,	& Bus
	NoBu	NoBu	NoBu	NoBu	NoEc	NoEc	
State	0.024	0.061	-0.060	-0.062	0.014	-0.007	0.030
School	(0.02)	$(0.02)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{**}$
Male	0.003	-0.145	0.084	0.050	0.004	-0.009	0.013
	(0.02)	$(0.02)^{**}$	$(0.02)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{**}$
White	-0.101	0.190	-0.058	-0.023	-0.022	0.017	-0.003
	$(0.03)^{**}$	$(0.03)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{*}$	(0.01)	(0.01)
Mother Univ. Graduate	0.098	-0.065	-0.010	-0.023	-0.002	-0.002	0.005
	$(0.03)^{**}$	$(0.03)^{**}$	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Father Univ. Graduate	0.067	-0.020	0.011	-0.008	-0.025	-0.021	-0.004
	$(0.03)^{**}$	(0.03)	(0.02)	(0.02)	$(0.01)^{*}$	$(0.01)^{*}$	(0.01)
Mother professional	-0.027	-0.007	0.028	0.006	0.014	-0.018	0.002

Peter Davies & Marco Ercolani		'Hard'	versus 'so	Slide 22 of 33			
Father professional	(0.02) 0.037 (0.03)	(0.02) -0.057 (0.02) ^{**}	${(0.01)}^{*} \\ 0.015 \\ (0.02)$	(0.01) 0.013 (0.02)	(0.01) 0.008 (0.01)	$(0.01)^* \\ -0.012 \\ (0.01)$	(0.01) -0.004 (0.01)
Family cultural capital	0.007	-0.003	0.001	0.000	-0.002	-0.002	-0.001
(incl. books)	$(0.00)^{**}$	$(0.00)^{*}$	(0.00)	(0.00)	$(0.00)^{**}$	$(0.00)^{**}$	$(0.00)^{**}$
Obs	1853						
Pseudo R^2	0.0800						

Notes: * p < 10%, ** p < 5%. Standard errors on marginal effects are reported in (parentheses) † Using data restricted to all non-missing observations

Abbreviations: Hard (A-levels), Soft (A-levels), NoEc(onomics A-level), NoBu(siness Studies A-level), Ec(onomics A-level), Bu(siness A-level)

IV.iii BINARY AND MULTINOMIAL LOGIT REGRESSIONS ON UNBALANCED DATA USING MULTIPLE IMPUTATION

Table 9: Marginal effects from multiply-imputed Logit regressions on intending to or actually studying Business Studies at A-level, using unbalanced data[†]

	(1)	(2)	(3)	(4)	(5)	(6)		
	1	All schools	:	Schools offering Business Studies:				
Took Business Studies:	Intended to	Actually did	Actually did	Intended to	Actually did	Actually did		
Expected GCSE	-0.000	-0.037	-0.035	0.001	-0.041	-0.040		
Grade Maths	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$		
Expected GCSE	-0.045	-0.035	-0.046	-0.040	-0.037	-0.049		
Grade English	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$		
Actual - Expected			-0.023			-0.029		
GCSE Grade Maths			$(0.01)^{**}$			$(0.01)^{**}$		
Actual - Expected			-0.036			-0.036		
GCSE Grade			$(0.01)^{**}$			$(0.01)^{**}$		
English								

Peter Davies & Marco En	rcolani	'Hard' v	es	Slide 24 of 33		
State School	-0.024	-0.032	-0.033	-0.041	-0.062	-0.061
	(0.02)	$(0.02)^{*}$	$(0.02)^{*}$	$(0.02)^{*}$	$(0.02)^{**}$	$(0.02)^{**}$
Peer Effect	-0.002	-0.030	-0.021	-0.011	-0.024	-0.014
	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)
Male	0.019	0.032	0.023	0.031	0.043	0.033
	(0.01)	$(0.01)^{**}$	$(0.01)^{*}$	$(0.02)^{*}$	$(0.02)^{**}$	$(0.02)^{**}$
White	-0.074	-0.045	-0.039	-0.074	-0.058	-0.052
	$(0.02)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Mother Univ. Graduate	0.011	0.009	0.013	0.008	0.009	0.014
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Father Univ. Graduate	-0.060	-0.046	-0.043	-0.066	-0.050	-0.047
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Mother professional	-0.027	-0.009	-0.012	-0.030	-0.010	-0.013
	$(0.02)^{*}$	(0.01)	(0.01)	$(0.02)^{*}$	(0.02)	(0.02)
Father professional	0.050	0.021	0.025	0.044	0.023	0.026
	$(0.02)^{**}$	(0.01)	$(0.01)^{*}$	$(0.02)^{**}$	(0.02)	(0.02)
Family cultural capital	-0.008	-0.027	-0.025	-0.008	-0.033	-0.030
(incl. books)	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$
Observations	2929	2929	2929	2399	2399	2399
Imputations	30	30	30	30	30	30
Average relative	0.0620	0.0694	0.0770	0.0585	0.0688	0.0754
variance increase						

Peter Davies & Marco E	'Hard' v	Slide 25 of 3	\$3						
Largest fraction of	0.2074	0.2066	0.2073	0.1833	0.2050	0.2056			
<i>F</i> -statistic	7.60^{**}	21.00**	19.45**	6.60^{**}	14.74**	14.04**			
Note: $\frac{1}{2}$									

Notes: * p < 10%, ** p < 5%. Standard errors on marginal effects are reported in (parentheses) † Using full dataset with 30 imputed observations for each missing observation

Table 10: Marginal effects from multiply-imputed Logit regressions on intending to or actually studying Economics at A-level, using unbalanced data[†]

	(1)	(2)	(3)	(4)	(5)	(6)
	1	All schools:	:	S	chools offer	ing
					Economics	:
Took	Intended	Actually	Actually	Intended	d Actually	Actually
Economics:	to	did	did	to	did	did
Expected GCSE	0.063	0.054	0.062	0.082	0.068	0.080
Grade Maths	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$
Expected GCSE	-0.032	-0.034	-0.041	-0.038	-0.038	-0.048
Grade English	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$
Actual - Expected			0.026			0.038
GCSE Grade Maths			$(0.01)^{**}$			$(0.02)^{**}$
Actual - Expected			-0.014			-0.018
GCSE Grade			(0.01)			(0.01)
English						
State School	-0.076	-0.076	-0.076	-0.072	-0.071	-0.070
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Peer Effect	0.054	0.049	0.048	0.044	0.008	0.005
	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)
Male	0.102	0.118	0.118	0.130	0.163	0.164

Peter Davies & Marco En	'Hard' v	'Hard' versus 'soft' subject choices				
	(0.01)**	(0.01)**	(0.01)**	(0.02)**	(0.02)**	(0.02)**
White	-0.068	-0.034	-0.032	-0.077	-0.050	-0.048
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{**}$
Mother Univ. Graduate	-0.052	-0.035	-0.035	-0.067	-0.039	-0.040
	$(0.02)^{**}$	$(0.02)^{*}$	$(0.02)^{**}$	$(0.02)^{**}$	$(0.02)^{*}$	$(0.02)^{*}$
Father Univ. Graduate	-0.010	-0.019	-0.020	-0.017	-0.022	-0.024
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Mother professional	0.008	0.014	0.014	0.009	0.011	0.011
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Father professional	0.036	0.008	0.009	0.044	0.003	0.005
	$(0.02)^{**}$	(0.02)	(0.02)	$(0.02)^{**}$	(0.02)	(0.02)
Family cultural capital	0.019	-0.003	-0.002	0.020	-0.007	-0.007
(incl. books)	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{**}$	(0.01)	(0.01)
Observations	2929	2929	2929	2280	2280	2280
Imputations	30	30	30	30	30	30
Average relative	0.0387	0.0319	0.0530	0.0383	0.0328	0.0571
increase in variance						
Largest fraction of	0.1233	0.0871	0.1742	0.1168	0.0868	0.1941
missing information						
F-statistic	28.32**	24.33**	20.31**	19.84**	14.95***	12.71**
NT de 1000 de de de	For C		•	1 00		/ · · ·

Notes: * p < 10%, ** p < 5%. Standard errors on marginal effects are reported in (parentheses) † Using full dataset with 30 imputed observations for each missing observation

Table 11: Marginal effects from Multinomial Logit regression on all outcomes of the single dependent variable, A-level subject combination, using unbalan data[†]

					<u>v</u>	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Hard	Soft	Hard	Soft	Hard	Soft	Eco
NoEc	NoEc	& Eco,	& Eco,	& Bus,	& Bus,	& Bus
NoBu	NoBu	NoBu	NoBu	NoEc	NoEc	
0.136	-0.142	0.054	-0.008	-0.021	-0.022	0.003
$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.00)^{**}$	(0.00)
0.059	0.019	-0.020	-0.011	-0.022	-0.014	-0.010
$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	$(0.00)^{**}$
0.087	-0.079	0.018	0.002	-0.010	-0.016	-0.002
$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	(0.01)	$(0.00)^{**}$	(0.00)
0.031	0.012	0.005	-0.015	-0.021	-0.009	-0.003
$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{*}$	$(0.01)^{**}$	(0.01)	(0.00)
0.091	0.023	-0.033	-0.042	-0.010	-0.042	0.013
$(0.02)^{**}$	(0.02)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)
-0.007	-0.031	0.023	0.030	0.000	-0.014	-0.002
(0.01)	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.00)
-0.021	-0.106	0.056	0.048	0.010	-0.000	0.015
(0.02)	$(0.02)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{**}$
-0.039	0.117	-0.039	0.005	-0.031	-0.010	-0.003
	(1) Hard NoEc NoBu 0.136 (0.01)** 0.059 (0.01)** 0.087 (0.01)** (0.01)** (0.02)** -0.007 (0.01) -0.021 (0.02) -0.039	$\begin{array}{ccccc} (1) & (2) \\ Hard & Soft \\ NoEc & NoEc \\ NoBu & NoBu \\ \hline 0.136 & -0.142 \\ (0.01)^{**} & (0.01)^{**} \\ 0.059 & 0.019 \\ (0.01)^{**} & (0.01) \\ 0.087 & -0.079 \\ (0.01)^{**} & (0.01) \\ 0.031 & 0.012 \\ (0.01)^{**} & (0.01) \\ 0.091 & 0.023 \\ (0.02)^{**} & (0.02) \\ -0.007 & -0.031 \\ (0.01) & (0.01)^{**} \\ -0.021 & -0.106 \\ (0.02) & (0.02)^{**} \\ -0.039 & 0.117 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Peter Davies & Marco Ercolani		'Hard'	versus 'so	Slide 29 of 33			
	(0.02)**	(0.02)**	(0.01)**	(0.01)	(0.01)**	(0.01)	(0.01)
Mother Univ. Graduate	0.036	-0.017	-0.014	-0.017	0.011	0.003	-0.001
	$(0.02)^{*}$	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Father Univ. Graduate	0.038	0.023	0.003	-0.021	-0.020	-0.019	-0.004
	$(0.02)^{*}$	(0.02)	(0.01)	(0.01)	(0.01)	$(0.01)^{*}$	(0.01)
Mother professional	-0.010	0.007	0.011	0.003	-0.002	-0.009	0.000
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Father professional	-0.004	-0.024	0.000	0.006	0.022	-0.005	0.004
	(0.02)	(0.02)	(0.01)	(0.01)	$(0.01)^{*}$	(0.01)	(0.01)
Family cultural capital	0.012	0.011	0.006	-0.003	-0.011	-0.011	-0.004
(incl. books)	(0.01)	(0.01)	(0.01)	(0.01)	$(0.01)^{**}$	$(0.00)^{**}$	(0.00)
Observations	2929						
Imputations	30						
Average relative variance increase	0.0639						
Largest fraction of missing information	0.2111						
F-statistic	12.79**						

Notes: * *p* < 10%, ** *p* < 5%. Standard errors for marginal effects reported in (parentheses) † Using full dataset with 30 imputed observations for each missing observation Abbreviations: Hard (A-levels), Soft (A-levels), NoEc(onomics A-level), NoBu(siness Studies A-level), Ec(onomics A-level), Bu(siness A-level) Table 12: Marginal effects from Multinomial Logit regression on all outcomes of the single dependent variable, A-level subject combination, using unrestricted data[†] and no expectations regressors

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hard	Soft	Hard	Soft	Hard	Soft	Eco
	NoEc	NoEc	& Eco,	& Eco,	& Bus,	& Bus,	& Bus
	NoBu	NoBu	NoBu	NoBu	NoEc	NoEc	
State School	0.107	0.008	-0.032	-0.043	-0.012	-0.039	0.012
	$(0.02)^{**}$	(0.02)	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)
Peer Effect	0.096	-0.101	0.042	0.024	-0.023	-0.033	-0.005
	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	$(0.00)^{*}$
Male	0.004	-0.140	0.064	0.049	0.009	-0.002	0.017
	(0.02)	$(0.02)^{**}$	$(0.01)^{**}$	$(0.01)^{**}$	(0.01)	(0.01)	$(0.01)^{**}$
White	-0.055	0.143	-0.047	0.004	-0.031	-0.010	-0.005
	$(0.02)^{**}$	$(0.02)^{**}$	$(0.01)^{**}$	(0.01)	$(0.01)^{**}$	(0.01)	(0.01)
Mother Univ. Graduate	0.062	-0.031	-0.012	-0.018	0.007	-0.006	-0.002
	$(0.02)^{**}$	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Father Univ. Graduate	0.064	0.002	0.007	-0.022	-0.024	-0.023	-0.004
	$(0.02)^{**}$	(0.02)	(0.01)	$(0.01)^{*}$	$(0.01)^{*}$	$(0.01)^{**}$	(0.01)
Mother professional	-0.000	-0.001	0.012	0.003	-0.004	-0.010	0.000
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)

Peter Davies & Marco Ercolani		'Hard' versus 'soft' subject choices				Slide 31 of 33	
Father professional	0.016	-0.033	0.001	0.005	0.018	-0.010	0.003
	(0.02)	$(0.02)^{*}$	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Family cultural capital	0.041	-0.005	0.007	-0.004	-0.018	-0.017	-0.005
(incl. books)	$(0.01)^{**}$	(0.01)	(0.01)	(0.01)	$(0.01)^{**}$	$(0.00)^{**}$	$(0.00)^{**}$
Observations	2929						
Imputations	30						
Average relative variance increase	0.0571						
Largest fraction of missing information	0.2278						
F-statistic	14.06^{**}						
Notes: $n < 10\%$ ** $n < 5\%$ Standard errors for marginal effects reported in (parentheses)							

Notes: * p < 10%, ** p < 5%. Standard errors for marginal effects reported in (parentheses) † Using full dataset with 30 imputed observations for each missing observation Abbreviations: Hard (A-levels), Soft (A-levels), NoEc(onomics A-level), NoBu(siness Studies A-level), Ec(onomics A-level), Bu(siness A-level)

V CONCLUSIONS

- 1. We examined the subject choices of English secondary school students in the context of government policy which has encouraged students to study 'hard/traditional' subjects.
- 2. We found a strong association between high GCSE grades in Mathematics and English and the likelihood of studying 'hard' subjects.
- 3. However, whilst there is a positive association between GCSE Mathematics grade and studying Economics at A-level, the association between studying Economics and GCSE English grade is negative.

- 4. Our data provide some support for two well-known theories (Expectancy Value Theory and Relative Risk Aversion Theory) which predict that males and students from higher socio-economic backgrounds will be more likely to study 'hard' subjects.
- 5. We found evidence of substantial switching between hard and soft Alevel subjects in response to differences between expected and actual GCSE grades in English and Mathematics. (These associations were much stronger for Mathematics than English.)
- 6. Whilst most schools offer most hard-traditional subjects they supplement these through a range of subjects which have been classified by the Russell Group universities as either 'hard-non-facilitating' or 'soft'. Economics is an example of the former and Business Studies is an example of the latter.