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A Quotation

The essence of risk management lies in maximizing the
areas where we have some control over the outcome while
minimizing the areas where we have absolutely no control
over the outcome and linkage between effect and cause is
hidden from us.

(See Bernstein [9], p. 197)
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Value at Risk (VaR) — Definition

The concept of Value at Risk (VaR) measures the ‘risk” of a
portfolio. More precisely, it is a statement of the following form:

With probability ¢ the potential loss will not exceed the Value at
Risk figure [— one sided confidence interval].

Speaking in mathematical terms, this is simply the (1 — ¢g)—quantile
of the distribution of the d—day change of value for a given portfolio
P. More specifically,

VaRg 4(P) = —F,; (1 —q) - PV (P) , (1)

where P2 is the change of value for a given portfolio over d days (the
d—day return), Fpq is the distribution function of P9 and PV (P) is
the present value of the portfolio P.
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Value at Risk (VaR) — Remarks

e [ he above definition also known absolute Value at Risk. Cor-
respondingly, the relative Value at Risk is defined as

E—VaR q(P) = — (IE [Pl + Fpi(1—q)-PV (P)) (@
e The quantile function F~1is a “generalized inverse” function
Frl(q) = inf {x L Fpg () > q} for 0 < g <1
= inf{x:P(Pdgaﬁ) Zq}.
e It is often convenient to write the VaR in percent of a potential
loss and not on a monetary base. In order to do so, remove the

term PV (P) in equation (1) and (2) and replace E[P] by the
mean of the underlying distribution F'.
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VaR — Further Remarks

e VaR has been developed by JP Morgan. More specific, they de-
veloped the so—called RiskMetrics and made it available publicly
in 1994, which has been outsourced to a newly founded com-
pany, also called RiskMetrics (see also http://www.riskmetrics.com).

e [ he webpage http://www.gloriamundi.org contains a lot of in-
formation about VaR.
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VaR — Pro and Contra

Pro:
e Easy to calculate (at least compared to other risk measures)

and to understand (it is a monetary amount that focuses the
mind).

e It is a common language of communication within the organisa-
tions as well as outside (e.g. regulators, auditors, shareholders).

e It is not really complicated, yet it is “messy’” and “time—consum-
ingﬂ

Contra:
e It is not a coherent measure, more specifically it does not satisfy

the sub—additivity axiom.
e It fails to recognize the concentration of risks.

e Most parametric approaches neglect the heavy tails and the

skewness of the return series.
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Calculating VaR

There are several approaches for calculating the Value at Risk—
figure. The most popular are the
e variance—covariance approach (parametric) [— RiskMetrics],
e historical simulation (nonparametric),

e Monte—Carlo simulation (parametric), and

e extreme value theory (semiparametric).

© Olaf Menkens School of Mathematical Sciences, DCU



Introduction to Value at Risk V4

Variance—Covariance Approach (VCA)

Assuming that the distribution of the observed returns are normally
distributed, the VaR computation can be simplified considerably.
This approach is a parametric one since it involves estimation of a
parameter — the standard deviation.

With this assumption the d-day VaR to the g—quantile calculates to

VaRg 4(X) = —Vd-Ng; (1 —q)-0-PV(X)

for a single asset where
o NO_} IS the inverse of the standard normal distribution function,
e 0 iS the — estimated — daily standard deviation of the asset, and

e PV (X) is the present value invested in asset X.
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Standard Normal Distribution and Quantiles
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Quantile

Standard Normal Density and the 95%

"¥TEOT'0 S ulod Sy Te Alsuap au) Jo anfeA ayL ‘6v¥9 T— aNfeA ay) sey
UoIuM ‘(isty 1e anfeA 1uadiad G 8y 40) nuenb Go'0 BYI }Iew J0p BYL “UONNGLISIP [BWION Plepuels

, , , , , , , o

0.4

,
7_ 5
o —

035
0.3
0.25—
0.1
0.05—

o

uonouny Alsuap fewloN - (x) J

o

School of Mathematical Sciences, DCU

© Olaf Menkens



11

Introduction to Value at Risk

Quantile

Standard Normal Density and the 98%
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Quantile
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VCA — Multiple Assets

The d-day VaR to the g—quantile is for a portfolio with n assets in
this situation given by

VaRgq(X) = —Vd- Ny  (1—q)- VYZY?,

where
° NO_% is the inverse of the standard normal distribution function

(as above),

e > s the — estimated — n X n covariance matrix of the assets
which are in the portfolio, and

e Y =PV (X) is a vector of length n and Y; (for i = 1,...,n) is
the amount invested in asset .

Problem: Some positions are non—linear in the underlying risk
factors (such as options or the bond price—yield relationship).
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VCA — Delta Approximation

Assumes that the non—linearity is sufficiently limited so that it is
possible to get an accurate VaR estimation while ignoring the non—
linearity.

The first—order Taylor series approximation of the change in the
value of an option is given by

AC~6 - NANX.

Thus, for very short holding periods, the VaR of an option can be
approximated by

VaR, 4(C) = 4d-VaR, 4(X)
= —Vd-Nj;(1—¢q)-0-PV(X)-5,

where C' is a call option on the underlying asset X and ¢ is the delta

of the option.
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VCA — Delta—Gamma Approximation

Consider the second—order Taylor series approximation rather than
the first—order one.

ACmS-AXJr%(AX)Q.

Making the assumption that AU = (AX)? is normal distributed
and independent of AX (which is normal distributed), this gives

2 2
o= \/520%4— <%) 0(2]2 \/5203(4-%0?(.

With this the Value at Risk calculates to

2
VaRg q(C) = —vVd- Ny  (1—¢q)-o-PV(X)- \/52 + 'Yzaz.
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VCA — Résume

Pro:

e Easy to calculate and to implement.

Contra:

e First—order approximation are reliable only if the portfolio is
close to linearity.

e Second—order approximation assumes that (AX)? is normally
distributed and independent of AX while it is indeed X2—distri-
buted and highly dependent of AX.

e [ here are many other delta—gamma approximations such as the
ones of Wilson (1994, 1996), Feuerverger and Wong (2000),
and Albanese et al. (2001).

e Numerical and simulation methods are improving rapidly (be-
coming both more sophisticated and faster). Thus the need for
Greek—based VaR estimation diminish.
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RiskMetrics

RiskMetrics is a well-known program which uses the variance—
covariance approach. A detailed technical description of the method
and the method for estimating the financial parameters can be found
on the website of RiskMetrics.

The main difference is that the variance as well as the covariance
are estimated by using an exponential weighted moving average
(EWMA) of the square of price returns.

1—A
Odi = > XTIRZ or

IS
2

R-
A-afl,i_1+(1—x)-7@.

Q
N
.

|

Analog for the covariance:

R? - R%
O%Qd,i = A G%Qd,z’—l +@A=2)

1;, " *v2;

© Olaf Menkens School of Mathematical Sciences, DCU



Introduction to Value at Risk

18
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Comparison of Estimated Volatility Based on Logarithmic Returns
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Estimated Density and Fitted Normal Density for DJI
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Left Tail of the Densities for DJI
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Estimated Density and Fitted Normal Density for DJI
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Estimated Density and Fitted Normal Density for eas
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Estimated Density and Fitted Normal Density for eas
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Historical Simulation

Historical simulation is based on order statistics. Given 100 obser-
vations the 99 percent quantile of the d—day returns is simply the
lowest observation.

Let [ be the number, which represents the ¢g—th quantile of the order
statistics with n observations. With this, z; is the ¢—th quantile of

an ordered time series X, which consists of n observations with
l

9= -

Estimating the g—quantile via order statistics is a generalisation of
the median (which is the 50 percent quantile). While the median
is in general a robust estimator, the robustness of the g—quantile
depends on the quantile and the number of observations.
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Observed Logarithmic Returns for DJI
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Observed Logarithmic Returns for eas
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Historical Simulation — Error Estimation 1

(i) 1 — a confidence interval

Hartung et al. [12] state that the 1 — a confidence interval for the
q—th quantile of an order statistics, which is based on n points, is
given approximately by [xz,;xs]. Here r and s are the next higher
natural numbers of

*

r* = mn-qg—uj_qVn-q(l —q) and

x

s = mn-q-+ ul_a/z\/fn - q(1 — q), respectively.

The notation uq has been used for the a—quantile of the N(0,1)—
distribution. This approximation can be used, if ¢g- (1 —¢q)-n > 9.
T herefore this approximation can be used up to ¢ = 0.01, ifn > 910.

Obviously, these confidence intervals are not symmetric, meaning
that the distribution of the error of the quantile estimation is not
symmetric and therefore not normal distributed.
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Historical Simulation — Error Estimation II

However, the error of the quantile estimation is asymptotically nor-
mal distributed (see e.g. Stuard and Ord [13]). Thus for large n
the error is approximately normal distributed and it is possible to
estimate the error as follows.

(ii) Approximating the standard error
Let X be a stochastic process with a differentiable density function
f > 0. Then Stuart and Ord showed, that the variance of z; is

52 — q - (1 - Q) 7
on (f(m))?
where f is the density function of X and f must be strict greater
than zero.
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1. Example: The normal distribution

For example, if X ~ N(0,02) the the error calculates to

q-(l—q). o2 . o2

Op = 5
o)
_q-(1-9) 21 - 02

where the substitution o-y = x has been used. This shows, that the
error is not independent of the variance of the underlying process,
if this underlying process is normal distributed.
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Some Typical Paths of the Brownian Motion
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Absolute Error
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Estimated Error of the Quantile Estimation for the Normal Distribution
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2. Example: The Cauchy distribution

Similarly, if X is Cauchy with mean zero, the propagation of the
error can be shown to be

¢-(L—q) 7°-(2*+~°)°

O'a;. pu—

n ~2
q-(1—q)
— n '7T2°’72'(y2+1)7

where the substitution ~v .-y = x has been used and ~ is the scale
parameter.
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e Cauchy Process
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Some Other Typical Paths of the Cauchy Process
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Estimated Error of the Quantile Estimation for the Cauchy Distribution
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Estimated Error of the Quantile Estimation for the Normal Distribution
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Estimated Error of the Quantile Estimation for the Cauchy Distribution
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Historical Simulation — Bootstrapping

Bootstrapping is a way to generate more observation than you
have actually available. The procedure is as follows.

1. Number the n observations you have from 1 to n.
2. Draw a number from 1 to n, uniformly distributed.

3. Given that this number is 7, take your —th observation as your
first observation for your new time series.

4. Repeat step 2. and 3. until you reached m, the desired length
of your newly generated time series.

5. Repeat step 2. to 4. to create many more time series.

© Olaf Menkens School of Mathematical Sciences, DCU
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Monte Carlo Simulation

e is the generation of time series (such as distribution of returns
or paths of asset prices) by the use of random numbers.

e draws numbers from a chosen distribution (e.g. normal, Stu-
dent—t, or a diffusion) which is supposed to be the future dis-
tribution of the underlying to produce a time series — a future
scenario.

e uses some price methodology to calculate the value of the port-
folio and its VaR.
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Principal Components Analysis

e can be used if the portfolio assets can be grouped into sup—
portfolios which consists only of highly correlated assets.

e states that each portfolio asset (S;);—; ., has a factor repre-

M)

sentation
ds; T dF;
?_Z =aj0t+ ) ai,j?? T €
? j=1 J
with m << n and (FJ> are pairwise independent.
1=1,....m

e isolates the factors that are responsible for most of the variabil-
ity.

e Example: three factors capture more than 95 percent of the
variability for interst rates. The factors are the shift, the twist,
and the curvature.
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Stress Testing

Stress testing involves estimating how the portfolio would perform
under some of the most extreme market moves seen in the past.

However, it should be estimated how the portfolio would perform
under some made—up worst case scenario as well.

The aim of stress testing is to understand (or at least to get an
idea of) the risk exposure of the portfolio.

© Olaf Menkens School of Mathematical Sciences, DCU
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Stress Testing — Examples

Examples are historical extreme movement such as

e October 19, 1987 when the S&P 500 moved by 22.3 standard
deviations.

e January 8, 1988 when the S&P 500 moved by 6.8 standard
deviations.

e April 10, 1992 when the 10—year UK—bond yields moved by 7.7
standard deviations.

Or worst case scenario such as
e a sudden increase/decrease of volatility of £20 percent.

e a sudden increase (or devaluation) of a currency which is im-
portant for the portfolio.

e a default of a major customer.

© Olaf Menkens School of Mathematical Sciences, DCU
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Backtesting

e iS a way to estimate the model risk.

e compares the d—day VaR estimation with the actually observed
profit /loss over the next d days. If the actually observed profit/loss
exceeds the VaR estimation too often, the model is not appro-
priate. For example, the 99 percent VaR—quantile estimation
should be exceeded by the actually observed profit/loss “on av-
erage’” 2.5 times given 250 observations.

e ‘‘clean” and “dirty” backtesting.

e see [10] and [11] for the requirements on backtesting by the
regulators.
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Model RiIsk

This is the risk that the model chosen is wrong.

In the Value at Risk framework the model risk is analysed by means
of backtesting.

For example, one has the following rule of thumb:

Nonparametric Parametric
Models Models or
“|_et the data speak Model Building
for itself.” Approach
lower higher
Model Risk
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Calculating VaR
— the Corresponding Model Risk

Variance—
Covariance
Simulation Extreme
“History rhymes, it Value Theory Monte—Carlo
does not repeat.” S Iati
(Mark Twain) Imulation
lower higher
Model Risk
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AT

Backtesting — the Three Zone Approach

Zone | Number of INncrease Iin
Exceptions Scaling Factor
Green 0—4 0
Red |10 or more 1

The number of exceptions is to be read out of 250 observa-

tions. The initial scaling factor is 3.
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Approach of the Banking Industry

The banking industry
e uUsSes the VaR approach to measure the market risk in “normal”
times.

e uses stress testing for estimating the impact of ‘‘crash’” times
to their portfolio.

e takes the liquidity risk into consideration by calculating the 10—
day VaR.

e evaluates the model risk by doing backtesting.
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Basic Requirements of the Regulators

e In order to calculate the required capital for the market risks,
the banks calculate the 99 percent VaR—quantile for the 10—day
returns. The bank must keep at least three times (plus a surplus
depending on model [— backtesting] and data quality) of this
VaR figure as capital for the market risk exposure.

e At least “clean” or “dirty” backtesting should be done, possibly
both. The results of the backtesting will be evaluated according
to the three zone approach.

e there are many more requirements such as on credit risk, oper-
ational risk, or data quality just to name some ...

e Further information can be found on the website of the Basel
Committee on Banking Supervision at the Bank for International
Settlements (BIS): http://www.bis.org/bcbs/index.htm .
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and a Citation

The problem with the math is that it adorned with certi-
tude events that were inherently uncertain.

'You take Monica Lewinsky, who walks into Clinton’s office
with a pizza. You have no idea where that's going to go,’

Conseco’s Max Bublitz, who had declined to invest in Long—
Term, noted.

'Yet if you apply math to it, you come up with a thirty—
eight percent chance she's going to go down on him. It
looks great, but it's all a guess.’

(See Lowenstein [8], p. 75)
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