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e One important aspect of a time series Is that it is one realization of a
multidimensional random variable

e In this context, an assumption of second-order stationarity Is
convenient because it facilitates inference through laws of large
numbers and central limit theorems in a classical way.

e Another aspect of the second-order stationarity assumption is that it
permits a Wold decomposition whereby a time series can be
represented as the sum of a linearly regular part involving an
Infinite-order weighted average of white noise, and a part that is
perfectly linearly predictable [e.g. Hannan, 1970, Multiple Time
Series (John Wiley), p. 137].



e This offered some justification for the then emerging Box-Jenkins
methods, where ARIMA models selected on the basis of the data could be
viewed as approximations to the regular part in the Wold decomposition

e These models produced satisfactory representations of many observed
economic time series, at least for the purpose of prediction, but as the
models were selected purely on the basis of the data, they lacked
theoretical justification, as if they emerged from a “black box”

e The essential problem faced by the econometrics profession in the
late 1960s and 1970s was that structural econometric models,
embodying restrictions from economic theory, were often
outperformed by the black box models.



e There was also the problem of the proliferation of data-based models for a

given time series that were incompatible with each other from the point of
view of economic theory

e |n the background, there was a debate about whether or not observed
aggregate time series, which were manifestly non-stationary, should have
random walk or other trend components removed prior to estimation given
the loss of long run information that such transformations imply.

e The introduction of the concepts of unit roots and co-integration in the

context of non-stationary time series helped to resolve some of these
ISSues.



e Two important papers, which occurred one after the other in an issue in
Econometrica in 1987 are:-

e Engle, R. F. & C.W.J. Granger (1987) Co-integration and error correction:
representation, estimation and testing. Econometrica 55, 251-276.

e Phillips, P.C.B. (1987) Time series regression with a unit root.
Econometrica 55, 277-301.

e Formative influences include work by A.W. Phillips on continuous time
dynamic disequilibrium trade cycle and cyclical growth models; a paper
by Sargan (1964) on wages and prices presented at a Colston society
conference; the paper by Davidson, Hendry, Srba and Yeo (Econ. J.,
1978), universally known as DHSY, on the consumption function; and
papers by Granger (J. Economet., 1981) and Dickey and Fuller (JASA,
1979; Econometrica, 1981)



@ Stationary AR(1) model:
Ye=pYi1+ U |pl <1. yo=0. wu~iid.N(0.0%). (1)

@ Ordinary least squares (OLS) estimator:
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@ It can be shown that, as T — o,

2
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e VT (57— p) L N©,0%/7) = N (0, (1 — ,92)) (4)
@ When p =1 (4) implies that
VT (pr—1) 5 0.

@ The distribution is degenerate (its variance, 1 — p?, is zero).
@ Not useful for making inferences when p = 1.



@ The nonstationary AR(1) model (or random walk) is
defined by:

Vi=pYi_1+ U, p=1, Yo=0, U ~ i.i.d.N(O,{Tz). (5)

@ By backward substitution it can be shown that

t
Y= Z u. (6)
j=1

and hence var(y;) = to? — oc as t — oc.



Deriving the limiting distribution of the OLS estimator

In this context Is a non-standard statistical problem.

HOWEVER, it is still possible to derive the distribution

of the numerator of the test statistic by standard methods.
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To derive the limiting distribution of the statistic

T—1 <1 __
A Zf:l Yt—1Uyt

t=1 J1—

we resort to functional central limit theory. The idea is to
characterize the limiting distribution of random elements that
live in function spaces like C[0, 1] or D[O, 1]. We consider

these because of the memory in the process: we need to

consider its whole trajectory and not just its endpoint.
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NB The following notation conforms with Tanaka (1996) and differs

from Phillips (1987) and Hamilton (1994).

We construct a function that measures a scaled (1/+/T) partial sum of the

errors u; up to a certain fraction » of the total sample 7

i) X (t)— u , Where [T7] is the integer part of 7%, t [0, 1],

" J'_—jL </
Zu for StS

i=1

Clearly X_(¢) € D[O, 1].



e An elegant theory can be constructed using D[0, 1] which contains
jumps but not isolated points but it is not separable under the uniform
metric discussed above, meaning there are “too many” sets on which to

define a probability space.

e Skorokhod (1956) showed that the space can be rendered separable
using what is now called the “Skorokhod metric” (his J1 metric), which
allows functions to be compared “sideways” as well as vertically:
for x, ye D[0,1],

dg=inf,_, l>0sup |A(1)— 1 <&,sup,

X(O)-y(A0))] < g},

where A denotes the set of all increasing functions 4:[0,1] —[0,1].



e This iIs the crucial element in terms of what is needed to define the Borel

c-algebra; however the metric space (D[0,1],d.) Is not complete and

Phillips used a modification introduced by Billingsley (1968) that
preserves the same topology:
d, =inf M,{g> 0: HAH <g&,Ssu pt‘x(t)— y(l(t))‘ <& }

where
ﬂ«(t) /I(S)\

Al=sup,,

and A'denotes the set of all increasing functions such that Hl”ﬁoo.



(i1) continuous version of the partial sum process

e |t is possible to use C[0, 1] endowed with the uniform metric even
although most of the functions of interest are not continuous but this
Involves an awkward construction that requires extra terms defined to
make the relevant partial sum process continuous be shown to be
asymptotically negligible

X (t ——;u +T(t— T)\/,u e C[0, 1].

The asymptotic behaviour of the partial sum process in (ii) is the same as
the that of (i).



Both (i) and (i1) set up the following two-stage approach:

e |n the first stage, we consider a real-valued stochastic process (xt,teN)
such that n2x =ocW(r), >0, where [rn], r<[0,1], denotes the

[rn]
Integer part of rn, “=” denotes weak convergence in D[0, 1] as

described above, and W represents standard Brownian motion on [0,1].
The approach is set up such that one of a variety of such FCLT’s could
be employed [Donsker, Erdos and Kac, McLeish, Hernndorff].

e.g. Donsker’s theorem: u;1.1.d.(0, ¢”) and E(uj4) < o,

then XT(t)— Zu = W (r), standard BM on C[0, 1].
oNT A



e |n the second stage, the continuous mapping theorem is applied, which
preserves weak convergence under continuous mappings from the
original metric space C[0, 1] or D[0, 1] into Euclidean space, e.g.

[y X, (6)dt or sup, X, ().
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@ We have derived the asymptotic distribution of the OLS
estimator in the AR(1) model with a unit root, given by

1/2)W(1)2 - 1]

/Wdr

@ Can we use p7 to test whether p = 1 in the AR(1) model?

@ Can we test for the presence of a unit root in more general
ARMA models?

ripr—1)=



@ Consider estimating, by OLS, the model
Vi = pYi1+ U Yo=0., us~iid.N(O,o%). (1)

@ Aimtotest Hy: p=1against H; . p < 1.
@ Note: explosive alternatives (p > 1) are excluded under H;.
@ Note: the test is one-sided and we can use

T(ﬁ‘r—1):>( f2)[W( 1] under Hp. (2)

W(r)zdr
0

@ Critical values in Table B.5 (case 1) of Hamilton (1994).

@ Note: the test is one-sided so we need significantly
negative values of T (pr — 1) in order to reject Hp.



An alternative is the Dickey-Fuller t-test, the statistic being

(pT—1)

Opr

Ir =

2
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53 = T 1 Z (Ve — PTYi1)?.



@ Under Hp : p =1, t7 does not have a limiting N(0O, 1)
distribution as it would in the stationary case.

@ From (3) and (4) we have
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@ The consistency of j7 ensures that s2 £ 52,

@ Using earlier results we find that, as T — oo,

(02/2)[W(1)? —1] _ (1/2)[W(1)? —1]

[ frre] " [foene]

@ Critical values in Table B.6 (case 1) of Hamilton (1994).

@ Need significantly negative values of tr in order to reject
the null hypothesis Hy : p = 1.




@ Consider the ARMA(p.q) process

e

H(L)y: = O(L)er, € ~ 1.i.d.(0,02).

@ If a unit root exists,

o~

o(2) = (1 - 2)o(2),

where ¢(z) is a polynomial of order p — 1.

@ Hence
o(L)

(1= L)y = (L)

€t OF Vi = Vi1 + Ut

L) D — S e
(‘)(L) € = E;,-(L)E.f — ; Er:,-jft’f_j.

where u; =



@ We could therefore consider

i ]

Yt = pYt—1 + U, Ut = Z Vj€r_j, (10)
j=0
and test Hy : p = 1 against H; : p < 1 using p7 as before.
@ But the serial correlation in u; will affect the results.
@ A useful tool is the Beveridge-Nelson decomposition.



Beveridge-Nelson decomposition

M
E(etes) = 0 (t # s), and

>l < 0. (11)

Then

t
ZU;:@’(UZEﬁm—nm (12)




@ Thus an |(1) (integrated of order one) process Ay; = u;
can be written

t

t
Ve=> U+yo=¢(1)) ¢+ m —m+Y.  (13)

= = . B e

(a)

@ Note that: (a) is a random walk, (b) is stationary, and (c)
represents initial conditions.



The representation in (13) is useful for establishing the
behaviour of

(77
VTXr(r) = T2y
t=1

[7r]
= o(M)T 2> e+ T2 (i — o)
=1

—  op(1)W(r). (14)

using the earlier convergence results for the partial sums of
white noise (provided that E(¢}) < o as well) and the fact that

T=12(m —mo) & 0as T — ox.



@ From (14) we find that, defining A = o/ (1),

T 1
_ 2
T‘2ny_1:/ [\/TXT(r)] dr:>)\2[j W(r)2ar.
t=1

1
0

@ Furthermore, recall that

(15)



@ Hence we find that

SINPW(1)2 — 7] — (0/A?)]

:2[W
/\2/ W(r /W 2dr -

@ (2) is a special case in which ¢(z) = 1 and g = 02 = )\2.
@ Note that o and \° represent nuisance parameters in (18)

l.e. we can’t obtain critical values for the distribution unless
they are known.

@ There are two main approaches to tackling this problem —
one uses a nonparametric correction, while the other is
fully parametric.

T(pr—1)=



@ We can write (18) in terms of the distribution in (2) (the
critical values for which are tabulated) as follows:

(1/2)[W(1 )—1] (1/2)[1 — (0/2°)]

/Wdr /Wdr

@ The second component on the RHS of (19) can be written

(1/2)(A2 = %) -

,\2/ W(r dr

T(pr—1)= . (19)




@ The idea behind the Phillips-Perron test is to find a random
variable n7 such that 777 = n and to base inferences on

(1/2)[W(1)2 — 1]

/W 2dr

Tpr—1)-7r=

@ It is easy to estimate ~q using

;
—~ 1 e
%:TZP% (21)

where Uy = yt — pryi—1.



@ Note that the spectral density of u; is

_ 0-2 I o 1w 2 2 0) = 2 1 2 )\2
Su(w) — 2?T ff;(e ) — i Su( ) = TJ 1 ( ) —
and s,(w) = 21_ Y el — 2ms,(0) = ) 4
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@ A possible estimator for \? is therefore

q q
M= bF=%+2>_ b (22)
j=—q J=1
- j
F=1/T) Uy, bj=1— .
t=j+1 (q * 1)

@ This is the Newey-West estimator which ensures 22 = 0.



@ Note: the lag truncation number q needs to be chosen
large enough so that A\? approximates 27s,(0) sufficiently
well.

@ The Phillips-Perron test statistic is therefore

1/2)(A2 — 72
-?}‘T—( /2) o) =7 as T — . (23)

T2 ZL yE

@ The nonparametric adjustment for nuisance parameters
yields a limiting distribution which is free of nuisance
parameters and for which critical values are tabulated.




@ Suppose y; satisfies the AR(p) process

O(L)y: = €.

where ¢(z) =1 -1z — ... — opZP.

@ Let
p=0Q1+ Qo+ ...+ Op.

Cj — _[f-’*}j+1 i f_:"}j_|_2 4+ ...+ {.-"iip]ﬁ (j =1.....

@ Then (see Hamilton p.517) it can be shown that

#(2) = (1 - pz) - ¢(2)(1 - 2).

where ((2) = GGz + GZ2 + ...+ (p1ZP7 .

(24)



@ It follows that

p—1
Yi=pYi—1+ ) CAy; j+ €.
j=1
or, subtracting y;_1 from both sides,

p—1
Ayr=(p— 1)1+ > GAYrj+ €t (25)
=

@ This is the ADF(p — 1) regression, and the test statistic is
the usual t-ratioon p — 1 fortesting Hp : p— 1 = 0.

@ The t-statistic has the same distribution as in (8).



@ Alternatively, suppose that Ay; has the Wold
representation
/_\J/f = L(L)Ff

@ The ADF approach attempts to approximate the
polynomial »(z) by 1/[1 — ((z)], yielding

p—1
Ayt = Z GAY—_j + €t.
j=1

@ Adding y;_1 to the RHS enables the test of a unit root to be
carried out in the usual way.



@ |t can be important to incorporate constants and time
trends into the PP and ADF regressions:

Yt =a+0t+ pYi 1+ Uy,

p—1
Aye=a+0t+ (p— 1)1+ > GAYij+ et
j=1
@ But it is important to bear in mind the implied model for y;
under both the null (Hy) and alternative (Hy) hypotheses.

@ Including a constant and/or time trend in the regression
affects the limiting distributions of the test statistics and
different sets of critical values are needed; these are given
In Hamilton (1994).



@ To apply the PP and ADF tests it is necessary to choose
the lag truncation parameter g in the former and the
number of lags p in the latter.

@ For the ADF test, it is possible to use information criteria
(e.g. Schwarz's or Akaike’s or Hannan-Quinn’'s) to

determine p.

@ But bear in mind that p needs to be sufficiently large to
capture the serial correlation properties in y; i.e. the
residuals need to be approximately white noise for the
critical values to be appropriate — standard serial
correlation tests can be used to check this.
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