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A Stochastic Framework for Socio-Economic
Interactions

Consider a population with an binary set of choices or opinions (denoted by
“ + ” and “− ”):

n+ + n− = 2N (1)

The socio-economic con�guration at any point in time can be characterized by:

n =
1

2
(n+ − n−) (2)

or the opinion index x:

x =
n

N
, x ∈ [−1, 1] (3)

Note that n+ = N + n , n− = N − n.

We assume that the dynamics can be captured by certain transition probabilities
for agents to move from the “+” to the “−”group and vice versa, p−+ and p+−.
This means that the population composition follows a stochastic process (which
might have systematic components entering the speci�cations of p−+ and p+−).
Note that this framework is di�erent from the more static probabilistic choice in
the Discrete Choice model. A complete characterization of the process requires
to solve for the probability distribution at any point in time, t, over all possible
states, n or x:
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P (n; t) with
N∑

n=−N

P (n; t) = 1 (4)

or

P (x; t) with
1∑

x=−1

P (x; t) = 1 (5)

These time-dependent distributions might or might not converge to a stationary
distribution for t →∞.

Dynamics : the probabilities to �nd the system in states n (or x) change over
time according to the probabilities for movements of single individuals. For
example, the con�guration might change from n to n + 1 or n − 1 with one
agent moving to another group with probabilities:

w(n → n + 1) = n−p+−(n; t) = (N − n)p+−(n), (6)

w(n → n− 1) = n+p−+(n; t) = (N + n)p−+(n) (7)

assuming that there is an in�uence of the overall con�guration n on individuals'
propensities to move between groups and that it is only the overall number of
agents in the “ + ” and “− ” groups, that in�uences these decisions.

Our goal is to obtain insights into the macroscopic behavior of a system of
many interacting agents (in terms of the time change of n or x ) from its mi-
croscopic properties, i.e. from the hypotheses on the systematic components of
the movements between groups of individual agents.

We assume that time is continuous and that individual switches can be formal-
ized via Poisson processes. We can, then, specify the dynamic process more for-
mally via conditional probabilities,e.g. ω(n+1, t+∆t | n, t), ω(n−1, t+∆t | n, t),
ω(n + 2, t + ∆t | n, t) etc. and in the limit 4t → 0 we de�ne 1

1The probability to observe n realizations of a Poisson process within a time interval ∆t

is given by

Pn(∆t) =
(λ∆t)n

n!
e−λ∆t. (8)

Hence,
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lim
∆t→0

ω(n + 1, t + ∆t | n, t)

∆t
= w(n + 1 | n, t) (11)

and
lim

∆t→0

ω(n− 1, t + ∆t | n, t)

∆t
= w(n− 1 | n, t) (12)

etc. It follows from the Poisson probabilities (9) and (10) that for ∆t → 0 more
than two simultaneous movements of individuals become increasingly unlikely
and the probability for one individual to change his mind converges to λ∆t with
λ the transition rate of the Poisson process (8) which in our framework is given
by the expressions introduced in eqs. (6) and (7): w(n + 1 | n, t) = w(n →
n+1) ≡ w↑(n) = n−p+− and w(n−1 | n, t) = w(n → n−1) ≡ w↓(n) = n+p− +.

The Master Equation for the Time Change of the Probability Density

The overall evolution of the system has to be described by the time change of the
probabilities over all states. In general, this amounts to a system of di�erence
equations for all possible system con�gurations n:

P (n, t + ∆t)− P (n, t) = (13)

∑

n′
ω(n, t + ∆t | n′, t)P (n′; t)

︸ ︷︷ ︸
in�ow of probability to state n

−
∑

n′
ω(n′, t + ∆t | n, t)P (n; t)

︸ ︷︷ ︸
out�ow of probability from state n

which is called the Master equation for the probability �ux. In the continuous-
time limit we obtain:

dP (n; t)

dt
=

∑

n′
{w(n | n′, t)P (n′; t)− w(n′ | n, t)P (n, t)} (14)

P1(∆t) = λ∆te−λ∆t = λ∆t(1− λ∆t +
(λ∆t)2

2
− . . .) (9)

P2(∆t) =
(λ∆t)2

2
e−λ∆t etc. (10)
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Note that in the continuous-time limit, transition probabilities ω(·) have been
replaced by transition rates w(·) on the right-hand side of eq.(14)

While the Master equation is more generally applicable, in our case of Poisson
jump processes we can restrict attention to neighboring states n′ = n ± 1 so
that:

dP (n; t)

dt
= w↓(n + 1)P (n + 1; t) + w↑(n− 1)P (n− 1; t) (15)

−(w↑(n) + w↓(n))P (n; t)

The Master equation can be solved analytically only in exceptional cases, but
it can always be simulated.

Assuming that the transition probabilities of individuals do not depend on the
raw numbers, but rather on the fraction of members of both groups, we can also
express the dynamics in terms of the opinion index x. Since ∆n = 1 corresponds
to ∆x = ∆n

N
= 1

N
, we have:

w↑(x) = w(x +
1

N
| x, t) = n−p+−(x) (16)

= N(1− x)p+−(x)

w↓(x) = w(x− 1

N
| x, t) = n+p−+(x) (17)

= N(1 + x)p−+(x)

and
dP (x; t)

dt
= w↓(x +

1

N
)P (x +

1

N
; t) + w↑(x− 1

N
) (18)

P (x− 1

N
; t)− (w↑(x) + w↓(x))P (x; t)

which gives the Master equation for the intensive macrovariable x in continuous
time.
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The Fokker-Planck Equation

Since for large N , x is close to a continuous quantity, we can perform a Taylor
series expansion with respect to ∆x: Rearranging (18) gives

dP (x; t)

dt
= w↑(x− 1

N
)P (x− 1

N
; t)− w↑(x)P (x; t) (19)

+w↓(x +
1

N
)P (x +

1

N
; t)− w↓(x)P (x; t)

A second-order approximation of the �rst and second group of components on
the right-hand side around x yields:

∂P (x; t)

∂t
=

∂

∂x
[w↑(x)P (x; t)](− 1

N
) (20)

+
1

2

∂

∂x2
[w↑(x)P (x; t)](− 1

N
)2

+
∂

∂x
[w↓(x)P (x; t)]

1

N
+

1

2

∂

∂x2
[w↓(x)P (x, t)](

1

N
)2

⇒ ∂P (x, t)

∂t
= − ∂

∂x
[(w↑(x)− w↓(x))P (x; t)]

1

N
(21)

+
1

2

∂

∂x2
[(w↑(x) + w↓(x))P (x; t)]

1

N2

This is the so-called Fokker-Planck Equation which contains information on the

• drift (systematic motion): A(x) = 1
N

(w↑(x)− w↓(x))

• di�usion (�uctuations): D(x) = 1
N2 (w↑(x) + w↓(x))

Note that in the above framework a law of large numbers applies since D(x) → 0

for N →∞.2

The Fokker-Planck equation can often be solved analytically and leads to a
Gaussian approximation of the probability distribution at time t (since it only
covers �rst and second moments). Note, however, that this Gaussian shape is
not maintained during the temporal development but might change into a vari-
ety of other shapes depending on the precise laws of motion (cf. our examples

2This depends on the formalisation of transition probabilities for individuals.
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below). The advantages of the Fokker-Planck equation over the exact Master
equation are that it can be simulated more easily , and that in certain cases
(for simple drift and di�usion processes) it is possible to derive the station-
ary distribution from the Fokker-Planck equation by setting the left-hand side
∂P (x;t)

∂t
= 0. If the distribution remains constant over time, we obviously obtain

a characterization of the limit state the system converges to. Solving for the
stationary distribution P(x) from the right-hand side of equation (21) would
only require integration with respect to x which might be possible in cases with
simple formalizations of transition rates.

Macroscopic Dynamics

One obtains further insights into the dynamics by derivation of macroscopic
quantities, e.g. the mean, variance etc.

For the mean xt note that its time change can be computed using the Master
equation:

xt =
1∑

x=−1

xP (x; t) (22)

dxt

dt
=

1∑
x=−1

x
dP (x; t)

dt
(23)

In the general case with jumps of arbitrary size, we get:

dxt

dt
=

∑
x

x
∑

x′
(wxx′P (x′, t)− wx′xP (x; t)) (24)

with wxx′ denoting the transition rates for movements from x′ to x. Since the
summation for x and x′ is over the same set of values, we can exchange the
order of summation:
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dxt

dt
=

∑
x

∑

x′
xwxx′P (x′; t)−

∑
x

∑

x′
xwx′xP (x; t) (25)

=
∑

x

∑

x′
x′wx′xP (x; t)−

∑
x

∑

x′
xwx′xP (x; t) (26)

=
∑

x

∑

x′
(x′ − x)wx′x

︸ ︷︷ ︸
≡ax,1

P (x, t) (27)

=
∑

x

ax,1P (x; t) = ax,1 (28)

ax,1 is denoted the �rst jump moment and in our case is given by:

∑

x′
(x′ − x)wx′x =

1

N
w↑(x) + (− 1

N
)w↓(x) (29)

=
1

N
(w↑(x)− w↓(x)) (30)

which recovers the drift term from the Fokker-Planck equation.

The change of the mean value is, therefore, determined by the average jump of
the system from any realisation x of the opinion index to its neighboring values
weighted by its probability of occurence, i.d. the probability distribution of x
at time t, P (x; t):

dxt

dt
= ax,1(x) (31)

If ax,1 is linear, we arrive at an exact mean value equation in closed form:

dxt

dt
= ax,1(x) (32)

If ax,1 is non-linear, we can perform an approximation of the �rst jump moment
ax,1 around the most probable value, x. Replacing the bars by the expectation
operator provides a more transparent representation of the resulting Taylor
series expansion:
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dxt

dt
= E[ax,1(x)] = E[ax,1(x̄) + (x− x̄)a′x,1 +

1

2
(x− x̄)2a′′x,1(x̄) + ...] (33)

Obviously, the second term vanishes in expectation, so that we arrive at:

dxt

dt
= ax,1(x) + (x− x)︸ ︷︷ ︸

=0

a′x,1(x) +
1

2
(x− x)2

︸ ︷︷ ︸
σ2

x

a′′x,1(x) + . . . (34)

We can, then, express the di�erential equation for x̄t as the sum of two distinct
terms with di�erent interpretation:

dxt

dt
= ax,1(x)︸ ︷︷ ︸

pure mean value dynamics

+
1

2
σ2

xa
′′
x,1(x)

︸ ︷︷ ︸
second-order correction for in�uence of �uctuations

(35)

Examples :

(1) A simple birth-death process: while we have developed the above formal
apparatus for a model with two groups, the introduction of the di�erence
n between group occupation numbers reduces the dynamics to that of one
macrovariable (n or x). This is formally equivalent to the description of
the group size dynamics in the case of one single group with occupation
number n with a maximum N of group members. As a �rst example, we
investigate a simple process of the change of the size of a group through
birth and death dynamics. Let us assume that the birth rate is constant
and equal to λ so that new group members emerge according to a Poisson
process as o�spring from existing group members:

w(n → n + 1) = λn ≡ rn. (36)

Obviously, this assumes that all existing group members have the same
fertility and reproduction is asexual.
For the death rate, in contrast, we assume that it is not constant but
increases with the population size due, for example, to exhaustion of
available resources. As the simplest formalization we assume a linear
relationship with �exible Poisson rates µ n

N
. N would, then, be a measure
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for the maximum population size or carrying capacity of the environment.
From the transition rates from states n in the lower ones this leads to:

w(n → n− 1) = µ
n

N
n ≡ ln. (37)

Using the short-hand notations rn and ln (for rightward and leftward
moves), we can establish the Master equation in continuous time:

dP (n, t)

dt
= rn−1P (n− 1; t) + ln+1P (n + 1; t)− (rn + ln)P (n; t). (38)

The �rst jump moment for n is:

an,1 =
∑

n′
(n′ − n)w(n → n′) = 1 · rn + (−1) · ln = λn− µ

N
n2, (39)

so that we arrive at the mean-value dynamics:

dnt

dt
= an,1(n) = λn − µ

N
n2. (40)

In �rst-order approximation, we get a simple di�erential equation in nt:

dnt

dt
' λnt − µ

N
n2

t (41)

Of course, we could also de�ne an intensive variable analogous to our pre-
vious index x : x = n

N
which now gives the relative size of the current

population compared to the carrying capacity N . We note that the tran-
sition rates for movements of x to its neighboring states x ± 1

N
are the

same as in (36) and (37) so that rn = rx and ln = lx hold. The Master
equation for the intensive variable is obtained as:

dP (x, t)

dt
= rx− 1

N
P (x− 1

N
; t) + lx+ 1

N
P (x +

1

N
; t)− (rx + lx)P (x; t) (42)
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The �rst jump moment for x is:

ax,1 =
∑

x′
(x′ − x)w(x → x′) =

1

N
λn + (− 1

N
)
µ

N
n2 = λx− µx2. (43)

Deriving the mean value dynamics for x, we obtain as a �rst-order ap-
proximation:

dxt

dt
= λxt − µxt

2 (44)

which is known as the logistic function. It is easy to get some basic in-
sights from (44). Equilibria require dxt

dt
= 0 which leads to λx = µx2. We,

therefore, �nd two possible equilibria x0
∗ = 0 and x1

∗ = λ
µ
. One can easily

check that they correspond to equilibria of the n-dynamics n0
∗ = 0 and

n1
∗ = λN

µ
.

Equilibria of a �rst-order di�erential equation are (locally) stable if the
�rst derivative of the dynamic law dxt

dt
= f(x) is negative at the equilib-

rium. Since f ′(x) = λ − 2µx, we see that x0
∗ is unambiguously unstable

while x1
∗ is unambiguously stable: the system will tend towards a long-

run population ratio of λ
µ
of the maximum capacity N . Fig. 1 shows

the �rst-order approximation of the mean-value dynamics together with
a simulation of the microscopic dynamics of the birth-death process. As
it can be seen, the group size quickly converges to the neighborhood of
the steady state of the mean value and after this short transient period
exhibits only minor �uctuations in the neighborhood of x1

∗. Fig. 2 shows
the pertinent development of the entire probability distribution (simulated
via the Fokker-Planck equation) which shows the shift of probability mass
over time from the initial condition towards x1

∗.

It is worthwhile to remember that despite the apparently good prediction
of the average behavior from the stable root of the approximate mean-
value dynamics (44), the resulting x1

∗ is not the exact mean value of
the process. With higher-order terms included in the approximation, one
would get successively closer to the true value. The next higher approxi-
mation would allow for the second-order correction of eq. (40) which, for
the dynamics of xt, would lead to:
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Figure 1: Mean value dynamics and simulated microscopic process. Parameters
are λ = 1, µ = 2, N = 200.

dxt

dt
= λxt − µxt

2 − µσ2
x (45)

since a
′′
x,2(x) = −2µ. In order to implement (45), we would, however, need

information on the dynamics of the �uctuations around the mean, σ2
x.

(2) As our second example, we consider a pure social dynamics in which
individuals have a higher propensity to switch to the larger group. A
popular formalization is:

p+− = νeαx, p−+ = νe−αx (46)

with: ν: general frequency of jumps,
α: intensity of social in�uence.
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Figure 2: The time change of the probability distribution from a numerical
solution of its Fokker-Planck equation, same parameters as in Fig. 1 with
initial condition of n = 10.

It follows that:

w↑(x) = N(1− x)νeαx, w↓(x) = N(1 + x)νe−αx (47)
ax,1 =

∑

x′
(x′ − x)wx′x

=
1

N
[N(1− x)νeαx −N(1 + x)νe−αx] (48)

= (1− x)νeαx − (1 + x)νe−αx

= 2ν(sinh(αx)− x cosh(αx))

= 2ν(tanh(αx)− x) cosh(αx) (49)

where we made use of the de�nitions of the hyperbolic trigonometric func-
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tions:

cosh(x) =
1

2
(ex + e−x), (50)

sinh(x) =
1

2
(ex − e−x), (51)

tanh(x) =
sinh(x)

cosh(x)
. (52)

The �rst-order approximation to the mean-value dynamics yields:

dxt

dt
= 2ν(tanh(αx)− x) cosh(αx). (53)

Since cosh(x) > 0 holds for all x, the condition for an equilibrium of the
mean value dynamics becomes:

dxt

dt
= 0 ⇒ x∗ = tanh(αx∗) (54)

since tanh(x) is bounded between −1 and 1 and its local slope at 0 is 1,
we get the following structure of equilibria:

• α ≤ 1 implies existence of a unique equilibrium x∗ = 0,

• α > 1 leads to multiple equilibria: x∗−, x∗0, x∗+ with x∗+ = −x∗−

As a generalization of this framework, we could allow for a general positive
or negative bias α0 towards one alternative:

p+− = νeα0+α1x, p−+ = νe−α0−α1x (55)

with α0 6= 0 one would still get a unique (multiple) equilibria for
α1 ≤ 1(α1 > 1). The resulting equilibrium distributions would be sym-
metrically bi-modal in the case α0 = 0, α1 > 1 with equal probabilities
of a �+� or �-� majority. In the case of a biased herding process, α1 > 1

still implies bi-modality in most cases, albeit with an asymmetry both for
the location of x+

∗ and x−∗ and their probabilities of occurrence. If α0

becomes large in absolute value, the bias eventually becomes the dom-
inant factor and interaction e�ects play only a minor role, so that the
system behavior switches back from bi-modality to uni-modality (i.e., a
unique equilibrium of the mean value dynamics). Fig. 3 illustrates the
determination of equilibria in the intersection of the tanh function with
the 45◦ line, while Fig. 4 shows the development of the transient density
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Figure 3: Location of equilibria of the social opinion dynamics

Figure 4: Transient densities of the social opinion dynamics
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for selected cases.

For the second-order approximation derived in eq. (35), we get:

dxt

dt
= 2ν(sinh(αx)− x) cosh(αx) + (56)

ν((α2 − 2α) sinh(αx)− xα cosh(αx))σ2
x

since

a′′x,1(x) = 2ν((α2 − 2α) sinh(αx)− αx cosh(αx)). (57)

Dynamics of Higher Moments

We now move on to determine the dynamics of the second moment:

x2
t =

∑
x

x2P (x; t) (58)

Its change in time can be investigated along the same lines as with mean value
dynamics using the Master equation in continuous time:

d

dt
x2

t =
∑

x

x2dP (x; t)

dt
(59)

=
∑

x

x2
∑

x′
(wxx′P (x′; t)− wxx′P (x; t)) (60)

=
∑

x

∑

x′
(x′2 − x2)wx′xP (x; t) (61)

=
∑

x

∑

x′
((x′ − x)2 + 2x(x′ − x))wx′xP (x; t) (62)

so that with
∑

x′
(x′ − x)2wx′x = ax,2 : the second jump moment, (63)

we arrive at:
dx2

t

dt
=

∑
x

(ax,2 + 2xax,1)P (x; t) (64)

= ax,2 + 2xax,1 (65)
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The variance is de�ned as σ2
x = x2 − x2 so that its change in time is

d

dt
σ2

x =
d

dt
(x2 − x2) (66)

=
d

dt
x2 − d

dt
x2 (67)

= ax,2 + 2xax,1 − 2x ax,1 (68)
= ax,2 + 2(x− x)ax,1 (69)

Performing a Taylor series expansion around x for both terms on the right-hand
side of (69) gives:

d

dt
σ2

x = E[ax,2(x) + (x− x)a
′
x,2(x) + ... (70)

+2(x− x)ax,1(x) + 2(x− x)(x− x)a
′
x,1 + ...] (71)

where we have replaced the outer bars by the expectation operator for better
readability. Obviously, the second and third term in this expansion are zero in
expectation, so that to �rst-order accuracy we only need to keep track of the
two remaining terms:

d

dt
σ2

x ≈ ax,2(x) + 2(x− x)2a
′
x,1(x) + . . . (72)

' ax,2(x) + 2σ2
xa

′
x,1(x). (73)

If both ax,1 and ax,2 are linear, the last line is again exact, if not, it is an ap-
proximation up to the �rst order.

Examples:

(1) Birth-death process

The second jump moment of the above birth-death process is:

ax,2 =
∑

x′
(x′ − x)2w(x → x′) = (74)

=
1

N2
λn + (− 1

N
)2µ

n

N
n =

1

N
(λx + µx2) (75)
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We, therefore, arrive at the �rst-order approximation of the variance dy-
namics:

d

dt
σ2

x =
1

N
(λx + µx2) + 2σ2

x(λ− 2µx) (76)

This equation provides us with a measure of the dispersion of single re-
alizations of the microscopic dynamics around its expectation which can
be derived from the mean value dynamics. If we set d

dt
σ2

x = 0, we obtain
the variance of the stationary distribution. Since we already know that
the mean value of the stationary distribution is given by x∗ = λ

µ
in the

�rst-order approximation, we can use this information to substitute for x

in equilibrium:

d

dt
σ2

x = 0 ⇒ 1

N
(λx + µx2) = −2σ2

x(λ− 2µx) (77)

⇒ σ2
x =

−(λx + µx2)

2N(λ− 2µx)
(78)

Inserting the stationary solution x∗ = λ
µ
, we obtain the stationary variance

σ2
x = λ

Nµ
. As expected, �uctuations decrease with system size N . This

relationship also shows that except for very small N , the second-order
correction to the mean value would be relatively small. As an example,
with the numbers of our illustrations in Fig. 1 and 2, λ = 1, µ = 2 and
N = 200, simultaneous solution of the second-order approximation to the
mean-value dynamics and the �rst-order approximation to the variance
dynamics in the stationary state (i.e. for d

dt
xt = d

dt
σ2

x = 0) yields x∗ ≈
0.4949 while the value obtained for the stationary variance changes from
σ2

x = 0.0025 to σ2
x ≈ 0.002513 when using this improved approximation

to the mean rather than the �rst-order approximation x̄∗ = 0.5. For
N = 20, the pertinent numbers are x̄∗ ≈ 0.4375 to second-order accuracy
(against 0.5 to �rst order) for the mean and 0.02734 (against 0.025) for
the variance.

(2) The herding model

In our second example:

ax,2 =
∑

x′
(x′ − x)2wx′x (79)

=
1

N2
(w↑(x) + w↓(x)) (80)
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which is the di�usion term D(x) from the Fokker-Planck equation. In-
serting the individual transition probabilities we obtain:

ax,2 =
1

N2
(N(1− x)eαx + N(1 + x)e−αx) (81)

=
2ν

N
(cosh(αx)− x sinh(αx)) (82)

(83)

and

a′x,1 = 2ν((α− 1) cosh(αx)− αx sinh(αx)). (84)

We arrive at the following variance dynamics:

d

dt
σ2

x =
2ν

N
(cosh(αx̄)− x sinh(αx)) (85)

+4ν((α− 1) cosh(αx)− xα sinh(αx))σ2
x

One derives the variance in a steady state (for d
dt

σ2
x = 0)

σ2
x =

−(cosh(αx)− x sinh(αx))

2N((α− 1) cosh(αx)− αx sinh(αx))
(86)

If x = 0, this boils down to:

σ2
x(x = 0) =

1

2N(1− α)
(87)

More generally, substituting x∗ = tanh(αx∗), one derives for arbitrary
equilibria x∗:

σ2
x(x

∗) =
1

2N(cosh2(αx∗)− α)
(88)

These relationships provide a number of interesting insights: First, the
variance of the stationary distribution is independent of the frequency of
individual transitions, ν. The reason is, that ν only governs the speed
of the dynamic process, not its qualitative outcome. One could, in fact,
simply drop ν by rescaling time through τ = ν · t. Second, computing
the derivative with respect to α shows that σ2

x increases with α in the
unique equilibrium case x∗ = 0 and diverges for α → 1. In the case of
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multiple equilibria x∗+, x∗− the variance rather decreases with α and di-
verges at the lower bound. Fig. 5 summarizes the behavior of the mean
values and variances of the stationary distribution under variation of α.
The increase of the variance with higher α in the uni-modal case is easily
explained via an increase in the herding tendency which leads to more
and more deviations from the balanced situation. Once stable majorities
have emerged, the same phenomenon leads to increased stability of these
majorities and, therefore, reduces �uctuations around x∗+ and x∗−. Note
that the stationary variance in this case is not the variance of the entire
stationary distribution, but due to its derivation as a �rst-order approxi-
mation of the �uctuations around the mean value rather is a measure of
the local �uctuations around one of the modes x∗+ or x∗− (i.e., it takes not
into account potential transitions between both equilibria).
The use of variance equations is, however, not restricted to the informa-
tion they provide on the �uctuations around stationary mean values. The
pertinent di�erential equations can also be used to study the extent of
�uctuations during transient dynamics. Fig. 6 shows an example: the
�ve thin solid lines are replications of microscopic simulations of the herd-
ing model with parameters ν = 1, α = 1.2�and N = 500. In all cases,
the starting value is x0 = −0.04, i.e. a very small dominance of �-� over
�+� agents. From our theoretical analysis we know that with the strong
herding intensity we are in the regime of bi-modal distributions, so that
the system would tend towards x∗+ or x∗−. The slight dominance of the �-�
group gives the second equilibrium a higher chance of occurrence. This is
re�ected in the mean value dynamics (the thick solid line) which predicts
a convergence towards x∗− ≈ −0.66. However, because of the proximity of
the initial condition to 0, this prediction comes with a high uncertainty
as small �uctuations could easily drive the microscopic dynamics into the
attracting area of x∗+ instead. Our �ve simulations underscore this aspect:
two of them converge to x∗+ and three to the expected long-run outcome
x∗−. However, this uncertainty is captured in the temporal development
of the variance illustrated by 2 · σx bands drawn around the trajectory
of the expected value. These diverge strongly initially due to the weak
attraction of x∗− but become narrower when x+ approaches the stationary
solution. The constant 2σ bands from about t = 12 on correspond to the
variance in equilibrium and it can be seen that these do nicely capture
the remaining �uctuations around x∗−.
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Figure 5: Dependency of mean values and variances in steady state on α.

Figure 6: Transient development of �rst and second moments and microscopic
simulations.
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(3) An asset pricing model

In this application, we interpret the former �+� and �-� groups as bullish
and bearish speculators, who are in�uenced by herd e�ects together with
observed price changes. Their transition probabilities, therefore, include
two terms:

p+− = νexp(α1x +
α2

ν
p
′
(t)), (89)

p−+ = νexp(−α1x− α2

ν
p′(t)), (90)

where the price change p
′
(t) reinforces or weakens the herding tendency

depending on whether its sign is in harmony or not with a bullish (bearish)
attitude.3 Following the lines of our previous derivations, we can establish
the mean value dynamics for the opinion index for the average bullish or
bearish market sentiment (which is pretty close in its structure to some
published indices of investor sentiment):

dx̄t

dt
= 2ν{tanh(α1x̄t +

α2

ν
p′(t))− x̄tcosh(α1x̄t +

α2

ν
p′(t)) (91)

In order to close the model, we have to add a hypothesis for price adjust-
ment. A simple possibility is Walrasian price adjustment in reaction to
excess demand (ED) with a certain adjustment speed β:

p′(t) =
dp

dt
= βED. (92)

Following a well-known strand of research in �nancial economics, excess
demand in our �nancial market could be decomposed into two compo-
nents: excess demand by chartists (EDc) and excess demand by funda-
mentalist traders (EDf ).
The chartists might be just those whom we have classi�ed as bullish or
bearish in the agent-based component of the model. If chartists have a
trading volume tc this amounts to:

EDc = (n+ − n−)tc = 2Nxtc = xTc with Tc = 2Ntc (93)
3Division by ν of the second term is for technical reasons: An agent considers the price

change during the mean time interval between switches between groups (which is ν−1).
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following the de�nition of the opinion index x = n+−n−
2N

. Fundamentalists,
in contrast will have their excess demand depending on the di�erence
between the perceived fundamental value Pf and the current market price:

EDf = Tf (pf − p), (94)

with Tf the proportional trading volume of fundamentalists. Putting both
components together, we arrive at the price adjustment equation:4

dp

dt
= β(xTc + Tf (pf − p)). (95)

Eqs. (91) and (95) formalize our interdependent dynamic system in which
the group dynamics in�uences the price dynamics and the price develop-
ment feeds back on investor sentiment.
In studying the resulting system, we might �rst explore the question of
existence and uniqueness or multiplicity of equilibria. Steady states of the
joint opinion and price dynamics require dx̄t

dt
= dp

dt
= 0. Since this implies

that the new second component of the herding probabilities is zero in any
steady state, we arrive at the joint condition:

dx̄t

dt
=

dp

dt
= 0 =⇒ tanh(α1xt) = xt ∧ p∗t =

Tc

Tf

x + pf (96)

Inspection reveals the following:

(i) for α1 ≤ 1 we have a unique equilibrium x0 together with p∗ = pf .

(ii) for α > 1 we encounter the two majority equilibria x∗+ and x∗− (now
bullish and bearish majorities) with pertinent prices p∗± = Tc

Tf
x∗±+pf .

Hence, if herding is weak (case (i)) the price converges to the fundamen-
tal value (on average); if herding is strong (case(ii)), the equilibrium price
comes along with an overvaluation or undervaluation of the asset com-
pared to its fundamentals.

However, there are additional possibilities in this more complicated sys-
tem: both x∗0 and the majority states x∗± could be unstable (stability
conditions are more involved than in the one-dimensional case). In such

4The price equation could in principle, also be formalized as a Poisson process with tran-
sition probabilities for price changes in upward and downward direction, cf. Lux (1997).
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Figure 7: Stable fundamental equilibrium: minor unsystematic �uctuations
around (x∗ = 0, p∗ = pf ), parameters are ν = 0.5, β = 1, Tc = Tf = 0.5, pf =

10, α1 = 0.8, α2 = 0.25, N = 100. Left: simulation result as coordinates in (x, p)

space, right: time series.
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Figure 8: The case of symmetric �bubble� equilibria: the system tends towards
(x∗+, p∗x) or (x∗−, p∗−) but also switches occasionally between phases with overval-
uation and undervaluation. Parameters as before except for α1 = 1.2, α2 = 0.75.
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Figure 9: The case of cyclical variation between bullish and bearish phases.
Parameters as before except for α1 = 1.1, α2 = 0.95

a scenario, the market performs almost regular cycles between overval-
uation and undervaluation accompanied by investor sentiment oscillat-
ing between bullish and bearish majorities, cf. Fig. 9. Expanding our
methodology above to the 2D case, we could also characterize the �uctu-
ations in di�erent market phases via the variance dynamics and the time
development of covariance between p and x, cf. Lux (1997)

The case of two interacting populations

Assume there are two groups with members 2N and 2M respectively and two
opinions (strategies) “1” and “2” within each group:

2M = m1 + m2 (97)
2N = n1 + n2 (98)

The con�guration of the overall population consists of the group occupation
numbers {m1,m2, n1, n2} or more compactly {m, n} with m = m1−m2

2
, n =

n1−n2

2
.
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Movements between subgroups could depend on the distribution of “1” and
“2” attitudes within the same population, but might also be in�uenced by the
distribution of attitudes within the second group. Individual transition rates
might then be written as:

pµ
12 = Vµexp(δµ + κµµm + κµνn) = Vµexp(∆uµ(m,n)) (99)

pµ
21 = Vµexp(−δµ − κµµm− κµνn) = Vµexp(−∆uµ(m,n)) (100)

pν
12 = Vνexp(δν + κνµm + κννn) = Vνexp(∆uν(m,n)) (101)

pν
21 = Vνexp(−δν − κνµm− κννn) = Vνexp(−∆uν(m,n)) (102)

If one follows all the previous steps, one derives the joint mean value equations
for m and n:

dm

dt
= 2Vµ{M sinh(∆uµ(m,n))−m cosh(∆uµ(m,n))} (103)

dn

dt
= 2Vν{N sinh(∆uν(m,n))− n cosh(∆uν(m,n))} (104)

The possibility of spillovers between groups allows for a rich variety of outcomes.

Consider the simple version: δµ = δν = 0, κµµ = κνν = κ̃, M = N , Vµ = Vν ,
and de�ne κ̃µν = κµνM , κ̃νµ = κνµN . The opinion indices have dynamics:

dm

dt
= sinh(κ̃m + κ̃µνn)−mcosh(κ̃m + κ̃µνn) (105)

dm

dt
= sinh(κ̃νµm + κ̃n)− ncosh(κ̃νµm + κ̃n) (106)

The following scenarios can be found (cf. the subsequent illustrations):

1. Weak internal agglomeration within groups together with weak segrega-
tion tendencies between groups (e.g. κ̃ = 0.2, κ̃µν = κ̃νµ = −0.5), the
dynamics tends to a homogenous mixture:

(m∗, n∗) = (0, 0). (107)

2. With higher agglomeration tendencies within groups (e.g., κ̃ = 0.5) and
higher segregation tendencies between groups (e.g. κ̃µν = κ̃νµ = −1) a
situation emerges where groups choose di�erent alternatives.

3. For asymmetric inter-group dependency (e.g. κ̃µν = −κ̃νµ = −1 one ob-
serves osciallatory convergence to a mixed population within both groups.



Agent-Based Models in Economics and Finance 27

4. If the asymmetry becomes more pronounced (e.g. κ̃µν = −1, κ̃νµ = −10,
the divergent trends of self-separation from the behavior of the other group
leads to permanent cycles.

Illustrations can be found in Figs. 10 to 14.
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Figure 10: (a) Parameters κ̃ = 0.2 and κ̃νµ = 0.5. Weak internal agglomeration
trend and weak symmetrical reciprocal segregation trend. All �uxlines approach
thr origin (0, 0) which describes the homogenous mixture of populations Pµ

and Pν and is the only stable stationary point; (b) Parameters as in Figure
(a). 2N = 80; Unimodal stationary propability distribution peaked around the
stable origin (0, 0).
Source: Weidlich (2000), p. 90.
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Figure 11: (a) Moderate internal agglomeration trend κ̃ = 0.5 and strong re-
ciprocal segregation trend σ̃ = 1.0. The two stable stationary points in the
second and fourth quadrant describe stable segregation of populations Pµ and
Pν in separate �ghettos�. The �uxlines approach one of these stable equlibrium
points; (b) Parameters as in Figure (a), 2N = 80. The bimodal stationary
probability distribution is peaked around the stationary points.
Source: Weidlich (2000), p. 92.
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Figure 12: (a) Moderate internal agglomeration trend κ̃ and strong asymmetric
interaction κ̃µν = −1.0 and κ̃νµ = +1.0. There exists one stable focus, the
orgin (0,0) into which all �uxlines spiral; (b) Parameters as in (a), 2N = 80.
The unimodal stationary probability distributions is peaked around the stable
focus (0,0).
Source: Weidlich (2000), p. 93.
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Figure 13: (a) Very strong internal agglomeration trend κ̃ = 1.2 and strong
asymmetric interaction κ̃µν = −1.0 and κ̃νµ = +10. The orgin (0,0) is an
unstable focus. All �uxlines approach a limit cycle.
Source: Weidlich (2000), p. 94.
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Figure 14: (b) Parameters in Fig.4(a), 2N = 80. The quadrumodal stationary
probability has four maxima corresponding to metastable situations and ridges
between the maxima along the limit cycle; (c) Parameters as in Fig.4(a) and (b).
example of stochastic trajectory belonging to transition rates. The trajectory
abides around the metastable points of maximal probability and traverses at
fast pace the states between the metastable situations.
Source: Weidlich (2000), p. 95.


