χ^2 and F Distributions

Lecture 9

χ^2 Distribution

- The χ^2 distribution is used to:
 - construct confidence intervals for a variance
 - compare a set of actual frequencies with expected frequencies
 - test for association between variables in a contingency table
 - ➤ It is asymmetric and depends on the degrees of freedom

F Distribution

- The F distribution is used to
 - test the hypothesis of equality of two variances
 - conduct an analysis of variance (ANOVA), comparing means across several samples
 - > It is asymmetric and depends on the degrees of freedom

Tails of the χ^2_{19} Distribution

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Critical Values of the Chi-squared Distribution

 NB chi-squared is not symmetric so table will give different values for the lower and upper tails

Excerpt from Table A4:

ν	0.990	0.975	•••	0.050	0.025	0.010
1	0.000	0.001		3.841	5.024	6.635
2	0.020	0.051		5.991	7.378	9.210
3	0.115	0.216		7.815	9.348	11.345
:	:	:		:	:	:
18	7.015	8.231		28.869	31.526	34.805
19	7.633	8.907		30.144	32.852	36.191
20	8.260	9.591		31.410	34.170	37.566

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Case 1: Estimating a Variance

- A random sample of size n = 20 yields a standard deviation of s = 25. How do we estimate the population variance?
- Point estimate: use $s^2 = 25^2 = 625$ which is unbiased (E(s^2) = σ^2)
- Interval estimate: we need the sampling distribution of s^2 ...

The Sampling Distribution of s²

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

• n-1 gives the degrees of freedom for the χ^2 distribution, 19 in this example.

Limits to the Confidence Interval

• For the 95% CI, we need the χ^2 values cutting off 2.5% in each tail of the distribution

Excerpt from Table A4:

ν	0.990	0.975	•••	0.050	0.025	0.010
1	0.000	0.001		3.841	5.024	6.635
2	0.020	0.051		5.991	7.378	9.210
3	0.115	0.216		7.815	9.348	11.345
:	:			:	:	:
18	7.015	8.231		28.869	31.526	34.805
19	7.633	8.907		30.144	32.852	36.191
20	8.260	9.591		31.410	34.170	37.566

Tails of the χ^2_{19} Distribution (cont.)

• We can be 95% confident that $(n-1)s^2/\sigma^2$ lies between 8.91 and 32.85 (for n = 20)

$$8.91 \le \frac{(n-1)s^2}{\sigma^2} \le 32.85$$

Rearranging:

$$\frac{(n-1)s^2}{32.85} \le \sigma^2 \le \frac{(n-1)s^2}{8.91}$$

• Substituting $s^2 = 625$ and n = 20:

$$361.5 \le \sigma^2 \le 1,332.8$$

gives the 95% CI estimate

Case 2: Comparing Actual vs Expected Frequencies

72 rolls of a dice yield:

Score on dice	1	2	3	4	5	6
Frequency	6	15	15	7	15	14

- From a fair dice one would expect each number to come up 12 times.
- Is this evidence of a biased dice?

Test Statistic

- H_0 : the dice is fair
 - H₁: the dice is biased
- This can be tested using

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

• which has a χ^2 distribution with k-1 degrees of freedom, k = 6 in this case because we have 6 outcomes.

Calculating the Test Statistic

Score		Expected frequency (<i>E</i>)	O – E	(<i>O</i> – <i>E</i>) ²	(O – E) ² E	
1	6	12	-6	36	3.00	
2	15	12	3	9	0.75	
3	15	12	3	9	0.75	
4	7	12	-5	25	2.08	
5	15	12	3	9	0.75	
6	14	12	2	4	0.33	
Totals	72	72	0		7.66	

Calculating the Test Statistic (cont.)

- The test statistic, 7.66, is less than the critical value of χ^2 with ν = 5, 11.1
- Hence the null is not rejected, the difference between observed and expected outcomes is random
- Note the critical value cuts off 5% (not 2.5%) in the upper tail of the distribution. Only large values of the test statistic reject H_0

Case 3: Contingency Tables

- The association between two variables can also be analysed via the χ^2 distribution
 - Voting behaviour based on a sample of 200:

Social class	Labour	Conservative	Liberal Democrat	Total
A	10	15	15	40
В	40	35	25	100
С	30	20	10	60
Total	80	70	50	200

Are Social Class and Voting Behaviour Related?

- H₀: no association between social class and voting behaviour
 H₁: some association
- Expected values are calculated, based on the null of no association
 - E.g. if there is no association:
 - 40% (80/200) of every social class should vote Labour, i.e. 16 from class A, 40 from B and 24 from C

Observed (and Expected) Values

Social class	Labour	Conservative	Liberal Democrat	Total	
Α	10(16)	15(14)	15(10)	40	
В	40(40)	35(35)	25(25)	100	
С	30(24)	20(21)	10(15)	60	
Total	80	70	50	200	

Calculating the Test Statistic

$$\frac{(10-16)^2}{16} + \frac{(15-14)^2}{14} + \frac{(15-10)^2}{10} + \frac{(40-40)^2}{40} + \frac{(35-35)^2}{35} + \frac{(25-25)^2}{25} + \frac{(30-24)^2}{24} + \frac{(20-21)^2}{21} + \frac{(10-15)^2}{15} = 8.04$$

For $v = (rows-1) \times (columns-1) = 4$, the critical value of the χ^2 distribution is 9.50, so the null of no association is not rejected at the 5% significance level.

Testing Two Variances - the *F*Distribution

- Do two samples have equal variances (i.e. come from populations with the same variance)?
- Data:

$$n_1 = 30 s_1 = 25$$

 $n_2 = 30 s_2 = 20$

Testing Two Variances - the *F*Distribution (cont.)

•
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

$$H_1$$
: $\sigma_1^2 = \sigma_2^2$

or, equivalently

$$H_0: \sigma_1^2/\sigma_2^2 = 1$$

$$H_1: \sigma_1^2/\sigma_2^2 \neq 1$$

The Test Statistic

The test statistic is

$$\frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

Evaluating this:

$$F = \frac{25^2}{20^2} = 1.5625$$

• $F^*_{29,29}$ = 2.09 >1.5625, so the null is not rejected. The variances may be considered equal

Excerpt From Table A5(b): the *F* Distribution

ν ₁	1	2	•••	24	30	40
V 2						
1	647.79	799.48		997.27	1001.40	1005.60
2	38.51	39.00		39.46	39.46	39.47
:	:	:		:	:	:
28	5.61	4.22		2.17	2.11	2.05
29	5.59	4.20		2.15	2.09	2.03
30	5.57	4.18		2.14	2.07	2.01

(Using $v_1 = 30$ (rather than 29) makes little practical difference.)

One or Two Tailed Test?

- As long as the larger variance is made the numerator of the test statistic, only 'large' values of F reject the null.
- The smallest possible value of F is 1, which occurs if the sample variances are equal. H_0 should not be rejected in this case.
- So, despite the " \neq " in H₁, this is a one tailed test.

Case 5: Analysis of Variance (ANOVA)

- A test for the equality of several means, not just two as before
- In our example we test for the equality of output of three factories, i.e. are they equally productive, on average, or not?

Example: Daily Output of Three Factories

Observa	tion Factory 1	Factory 2	Factory 3
1	415	385	408
2	430	410	415
3	395	409	418
4	399	403	440
5	408	405	425
6	418	400	
7		399	

Chart of Output

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Hypothesis Test

- H_0 : $\mu_1 = \mu_2 = \mu_3$ H_1 : $\mu_1 \neq \mu_2 \neq \mu_3$
- Principle of the test: break down the total variance of all observations into the within factory variance and the between factory variance
- If the between variance component is large relative to the within variance component, reject H_0

Sums of Squares

Rather than variances, work with sums of squares

$$s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1}$$
 Sum of squares Nariance

Three Sums of Squares

- Total sum of squares (TSS)
 - Sum of squares of all deviations from the overall average
- Between sum of squares (BSS)
 - Sum of squares of deviations of factory means from overall average
- Within sum of squares (WSS)
 - Sum of squares of deviations within each factory, from factory average

Test Statistic

$$F = \frac{BSS/(k-1)}{WSS/(n-k)}$$

- The *F* statistic is the ratio of BSS to WSS, each adjusted by their degrees of freedom (*k*-1 and *n-k*)
- Large values of $F \Rightarrow$ BSS large relative to WSS \Rightarrow between factories deviations large \Rightarrow reject H₀

Calculations

• TSS =
$$\sum_{j} \sum_{i} (x_{ij} - \overline{x})^{2}$$

(*j* indexes factories, *i* indexes observations)

=
$$(415 - 410.11)^2 + (430 - 410.11)^2 + ... + (440 - 410.11)^2 + (425 - 410.11)^2 = 2,977.778$$

410.11 is the overall, or grand, average

Calculations (cont.)

• BSS =
$$\sum_{j} \sum_{i} (\overline{x}_{i} - \overline{x})^{2}$$

where \bar{x}_i is the average output of factory i

$$= 6 \times (410.83 - 410.11)^2 + 7 \times (401.57 - 410.11)^2 + 5 \times (421.2 - 410.11)^2 = 1,128.43$$

• 410.83, 401.57, 421.11 are the three averages, respectively.

Calculations (cont.)

• Alternatively, WSS =
$$\sum_{j} \sum_{i} (x_{ij} - \overline{x}_{i})^{2}$$

= $(415\text{-}410.83)^{2} + \dots + (418\text{-}410.83)^{2} + (385\text{-}401.57)^{2} + \dots + (399\text{-}401.57)^{2} + (408\text{-}421.2)^{2} + \dots + (425\text{-}421.2)^{2}$
= $1.849.348$

Result of the Test

$$F = \frac{BSS/(k-1)}{WSS/(n-k)} = \frac{1128.43/(3-1)}{1849.348/(18-3)} = 4.576$$

- $F^*_{2,15} = 3.682$ (5% significance level)
- $F > F^*$ hence we reject H_0 . There are significant differences between the factories.
- Easiest to do in EXCEL.....

ANOVA Table (Excel Format)

SUMMARY

Groups	Count	Sum	Average	Variance
Factory 1	6	2465	410.833	166.967
Factory 2	7	2811	401.571	70.6191
Factory 3	5	2106	421.2	147.7

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1128.430	2	564.215	4.576	0.028	3.68
Within Groups	1849.348	15	123.290			
Total	2977.778	17				

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Summary

- Use the χ^2 distribution to
 - Calculate the CI for a variance
 - Compare actual and expected values
 - Analyse a contingency table
- Use the F distribution to
 - Test for the equality of two variances
 - Test for the equality of several means