Probability and Probability Distributions

Lecture 2

Probability

- Probability underlies statistical inference the drawing of conclusions from a sample of data
- If samples are drawn at random, their characteristics (such as the sample mean) depend upon chance
- Hence to understand how to interpret sample evidence, we need to understand chance, or probability

Definition of Probability

- The probability of an event A may be defined in different ways:
 - The frequentist view: the proportion of trials in which the event occurs, calculated as the number of trials approaches infinity
 - The subjective view: someone's degree of belief about the likelihood of an event occurring

Probabilities

- With each outcome in the sample space we can associate a probability
- Example: Toss a coin
 - Pr(Head) = 1/2
 - $Pr(Tail) = \frac{1}{2}$
- This is an example of a probability distribution

Rules for Probabilities

- $0 \le \Pr(A) \le 1$
- $\sum p = 1$, or 100%, summed over all outcomes
- Pr(not-A) = 1 Pr(A)

Probability Distribution

- We extend the probability analysis by considering random variables (usually the outcome of a probability experiment)
- These (usually) have a known probability distribution
- Once we work out the relevant distribution, solving the problem is usually straightforward

Random Variables

- Most statistics (e.g. the sample mean) are random variables
- Many random variables have well-known probability distributions associated with them
- To understand random variables, we need to know about probability distributions

Some Standard Probability Distributions

- Binomial distribution
- Normal distribution
 and the t-distribution
- Poisson distribution

When do They Arise?

- Binomial when the underlying probability experiment has only two possible outcomes (e.g. tossing a coin)
- Normal when many small independent factors influence a variable (e.g. IQ, influenced by genes, diet, etc.)
- Poisson for rare events, when the probability of occurrence is low

The Normal Distribution

- Examples of Normally distributed variables:
 - IQ
 - Heights
 - the sample mean
 - some transformations of variables: e.g. natural logarithm of income is often normal

The Normal Distribution (cont.)

- The Normal distribution is
 - bell shaped
 - Symmetric
 - Unimodal
 - and extends from
 $x = -\infty$ to + ∞
 (in theory)

Parameters of the Distribution

• The two parameters of the Normal distribution are the mean μ and the variance σ^2

$$-x \sim N(\mu, \sigma^2)$$

e.g. Men's heights are Normally distributed with mean 174 cm and variance 92.16

$$-x_{M} \sim N(174, 92.16)$$

e.g. Women's heights are Normally distributed with a mean of 166 cm and variance 40.32

$$-x_W \sim N(166, 40.32)$$

Graph of Men's and Women's Heights

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Areas Under the Distribution

What is the proportion of women that are taller than 175 cm?

Barrow, Statistics for Economics, Accounting and Business Studies, 4th edition © Pearson Education Limited 2006

Areas Under the Distribution (cont.)

- How many standard deviations is 175 above 166?
- One standard deviation is $\sqrt{40.32} = 6.35$, hence

$$z = \frac{175 - 166}{6.35} = 1.42$$

- So 175 lies 1.42 standard deviations above the mean
- How much of the Normal distribution lies beyond 1.42 s.d's above the mean? Use tables...

Table A2 The Standard Normal Distribution

Z	0.00	0.01	0.02	0.03	0.04	0.05	•••
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	
:	:	i l	:	:	:	:	
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	
: :	:	÷	:	:	:	:	

Answer

- 7.78% of women are taller than 175 cm.
- To find the area in the tail of the distribution:
 - 1. Calculate the *z*-score, given the number of standard deviations between the mean and the desired height
 - 2. Then look the z-score up in tables to get a probability
 - 3. Use rules of symmetry where appropriate

The Distribution of the Sample Mean

• If samples of size n are randomly drawn from a Normally distributed population of mean μ and variance σ^2 , the sample mean is distributed as

$$\overline{x} \sim N(\mu, \sigma^2/n)$$

• E.g. if samples of 50 women are chosen, the *sample mean* is distributed

$$\bar{x} \sim N(166, 40.32/50)$$

• note the very small standard error: $\sqrt{(40.32/50)}=0.897$

The Distributions of x and of \overline{x}

Note the distinction between

$$x \sim N \big(\mu, \sigma^2 \big)$$
 and
$$\overline{x} \sim N \big(\mu, \sigma^2 / n \big)$$

- The former refers to the distribution of a typical member of the population, and the latter to the distribution of the sample mean
- We usually refer to the square root of the variance of the sample mean as the standard error of the sample mean, rather than the standard deviation

Example

 What is the probability of drawing a sample of 50 women whose average height is > 168 cm?

$$z = \frac{168 - 166}{\sqrt{40.32/50}} = 2.23$$

- -z = 2.23 cuts off 1.29% in the upper tail of the standard Normal distribution, so there is only a probability of 1.29% of drawing a sample with a mean > 168 cm
- Q. what is probability of drawing a sample with a mean <168 cm?

The Distribution of the Sample Proportion

• The sample proportion also has a normal distribution

$$p \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

- where p is the sample proportion, π the population proportion, and the variance of the sample proportion is $\pi(1-\pi)/n$.
- since π is usually unknown we estimate it with p

The Central Limit Theorem

- If the sample size is large (n > 25) the population does not have to be Normally distributed, the sample mean is (approximately) Normal whatever the shape of the population distribution
- The approximation gets better, the larger the sample size. 25 is a safe minimum to use

Distributions when Samples are Small: Using the *t* distribution

- When:
 - The sample size is small (<25 or so), and
 - The true variance, σ^2 , is unknown

Then the t distribution should be used instead of the standard Normal.

The t Distribution

- The t distribution is
 - bell shaped
 - symmetric
 - unimodal
 - extends from $x = -\infty$ to $+\infty$ (in theory)

- more spread out than Normal
- depends on n-1 (degrees of freedom)

Summary

- Most statistical problems concern random variables which have an associated probability distribution
- Common distributions are the Binomial, Normal and Poisson (there many others)
- Once the appropriate distribution for the problem is recognised, the solution is relatively straightforward