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Introduction

I Natural resources are natural assets from which we derive
value (utility)

I Broad de�nition includes amenity value, provision of
�ecosystem services�, etc.

I We focus here on natural resources that must be extracted or
harvested

I Distinguish between renewable and non-renewable resources
I Renewable resources are capable of growth (on some
meaningful timescale), e.g., �sh, (young growth) forests

I Non-renewable resources are incapable of signi�cant growth,
e.g., fossil fuels, ores, diamonds

I In general, e¢ cient and optimal use of natural resources
involves intertemporal allocation
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A capital-theoretic approach

I Think of natural resources as natural capital

I We expect a capital asset to generate a return at least as
great as that from an alternative (numeraire) investment

I Consider the arbitrage equation for an asset

y (t) = rp (t)� ṗ

where ṗ denotes dp (t) /dt
I The yield y (t) should be (at least) equal to the return from
the numeraire asset rp (t) minus appreciation or plus
depreciation ṗ

I This is sometimes called the short run equation of yield
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Hotelling�s Rule for a non-renewable resource

I A non-renewable resource does not grow and hence does not
produce a yield

I If y (t) = 0, we can rearrange the arbitrage equation to get

y (t) = 0 = rp (t)� ṗ ) ṗ
p (t)

= r

I This is Hotelling�s Rule (1931) for the e¢ cient extraction of
a non-renewable resource

I The value (price) of the resource must increase at a rate equal
to the rate of return on the numeraire asset (interest rate)
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A yield equation for a renewable resource

I A renewable resource can produce a yield through growth

I Suppose ṗ = 0, then from the arbitrage equation we can �nd

y (t) = rp (t) ) y (t)
p (t)

= r

I Here, we want the yield to provide an internal rate of return
at least as great as the interest rate r

I In e¤ect, we require that the growth rate of the resource
equals the interest rate
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Discounting

I In general, individuals have positive time preferences over
consumption (money)

I This gives the social discount rate or �pure� social rate of
time preference r

I High discount rates heavily discount future bene�ts and costs
I The discount rate and the interest rate measure essentially
the same thing

I Hence, the discount rate re�ects the opportunity cost of
investment (saving)

I Market interest rates also re�ect risk, in�ation, taxation, etc.
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Discounting and present value

I From Hotelling�s Rule

ṗ
p (t)

= r ) ṗ = rp (t)

I Then it follows that

p (t) = p (0) ert , p (0) = p (t) e�rt

I Here, p (0) is the present value of p (t) at t = 0
I Thus, Hotelling�s Rule implies that the discounted resource
price is constant along an e¢ cient extraction path

I In discrete time notation...

p0 =
�

1
1+ δ

�t
pt , t = 1, 2, ...T

I Remember that

e�r =
1

1+ δ
, r = ln (1+ δ)
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Discounting and present value contd.

I The present value of a stream of payments or pro�ts v (t) is
given by Z T

0
v (t) e�rtdt

I Or in discrete time notation

T

∑
t=0

�
1

1+ δ

�t
vt

= v0 +
1

1+ δ
v1 +

�
1

1+ δ

�2
v2 + ...+

�
1

1+ δ

�T
vT
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A simple two-period resource allocation problem

I The owner of a non-renewable resource x0 seeks to maximise

1
1+ δ

v1 (q1) +
�

1
1+ δ

�2
v2 (q2)

subject to the constraint

q1 + q2 = x0

I The Lagrangian function for this problem is

L � 1
1+ δ

v1 (q1) +
�

1
1+ δ

�2
v2 (q2) + λ [x0 � q1 � q2]

I The two �rst order (necessary) conditions are

1
1+ δ

v 01 (q
�
1 )� λ = 0,

�
1

1+ δ

�2
v 02 (q

�
2 )� λ = 0
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A simple two-period resource allocation problem contd.

I Solving the FOCs for the Lagrange multiplier λ we get

v 02 (q
�
2 )

v 01 (q
�
1 )
= 1+ δ , v 02 (q

�
2 )� v 01 (q�1 )
v 01 (q

�
1 )

= δ

which is Hotelling�s Rule (in discrete time notation)

I If vt (qt ) � ptqt (zero extraction costs) then v 0t (qt ) = pt and
we have

p2
p1
= 1+ δ , p2 � p1

p1
= δ

I In continuous time terms this is equivalent to

ṗ
p (t)

= r
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A simple two-period resource allocation problem contd.

I Instead, we could attach a multiplier to a stock constraint at
each point in time

L � 1
1+ δ

v1 (q1) +
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1+ δ

�2
v2 (q2) +

1
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λ1 [x0 � x1]

+

�
1
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�2
λ2 [x1 � q1 � x2] +

�
1
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�3
λ3 [x2 � q2]

I The FOCs for q1 and q2 are now

1
1+ δ

v 01 (q
�
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A simple two-period resource allocation problem contd.

I If the Lagrangian is maximised by q�1 , it should also be
maximised by x�2 , so that we can add another FOC

�
�

1
1+ δ

�2
λ2 +

�
1

1+ δ

�3
λ3 = 0

I This condition implies

λ2 =
1

1+ δ
λ3

I Hence, the discounted shadow price is also constant across
time

I Substituting for λt , we again get

v 01 (q
�
1 ) =

1
1+ δ

v 02 (q
�
2 )
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A simple renewable resource problem

I We can set the problem in terms of a renewable resource by
incorporating a growth function gt (xt ) into each of the stock
constraints�

1
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�t
λt [xt�1 + gt�1 (xt�1)� qt�1 � xt ]

I Solving the Lagrangian as before, we get
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A simple renewable resource problem contd.

I Solving for λt , we now �nd the intertemporal rule as

v 02 (q
�
2 )

v 01 (q
�
1 )
=

1+ δ

1+ g 02 (x
�
2 )

I In continuous time, this is equivalent to

dv 0 (q) /dt
v 0 (q)

= r � g 0 (x)

I Or, if v 0 (q) = p,
ṗ
p
= r � g 0 (x)

I If ṗ = 0, we get the yield equation

p � g 0 (x)
p

� y (t)
p (t)

= r
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= r � g 0 (x)

I Or, if v 0 (q) = p,
ṗ
p
= r � g 0 (x)

I If ṗ = 0, we get the yield equation

p � g 0 (x)
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� y (t)
p (t)

= r
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ṗ
p
= r � g 0 (x)
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