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» Natural resources are natural assets from which we derive
value (utility)

» Broad definition includes amenity value, provision of
“ecosystem services”, etc.

» We focus here on natural resources that must be extracted or
harvested

» Distinguish between renewable and non-renewable resources

» Renewable resources are capable of growth (on some
meaningful timescale), e.g., fish, (young growth) forests

» Non-renewable resources are incapable of significant growth,
e.g., fossil fuels, ores, diamonds

> In general, efficient and optimal use of natural resources
involves intertemporal allocation
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» Think of natural resources as natural capital

» We expect a capital asset to generate a return at least as
great as that from an alternative (numeraire) investment

» Consider the arbitrage equation for an asset

y (&)= (t)—p

where p denotes dp (t) /dt

» The yield y (t) should be (at least) equal to the return from
the numeraire asset rp (t) minus appreciation or plus
depreciation p

» This is sometimes called the short run equation of yield
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Hotelling's Rule for a non-renewable resource

» A non-renewable resource does not grow and hence does not
produce a yield

v

If y (t) = 0, we can rearrange the arbitrage equation to get

y(t)=0=rp(t)—p = m:r

v

This is Hotelling’s Rule (1931) for the efficient extraction of
a non-renewable resource

v

The value (price) of the resource must increase at a rate equal
to the rate of return on the numeraire asset (interest rate)
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A vyield equation for a renewable resource

> A renewable resource can produce a yield through growth
» Suppose p = 0, then from the arbitrage equation we can find
y (1)
y(t)=rp(t = =r
O=r() = 20

> Here, we want the yield to provide an internal rate of return
at least as great as the interest rate r

v

In effect, we require that the growth rate of the resource
equals the interest rate
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Discounting

v

In general, individuals have positive time preferences over
consumption (money)

This gives the social discount rate or “pure” social rate of
time preference r

High discount rates heavily discount future benefits and costs

The discount rate and the interest rate measure essentially
the same thing

Hence, the discount rate reflects the opportunity cost of
investment (saving)

Market interest rates also reflect risk, inflation, taxation, etc.
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Discounting and present value

» From Hotelling's Rule

p[(bt):r = p=rp(t)

v

Then it follows that

p(t)=p(0)e" <« p0)=p(t)e "
Here, p (0) is the present value of p(t) at t =0

Thus, Hotelling's Rule implies that the discounted resource
price is constant along an efficient extraction path

vy

v

In discrete time notation...

1 t
Po [14—5} Pt» ) Ly

v

Remember that

1
eir:m = r:|n(1—|—(5)
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> The present value of a stream of payments or profits v (t) is
given by

;
/ v(t)e "dt
0

» Or in discrete time notation

:Vo—|—

1
1+06
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L
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A simple two-period resource allocation problem

» The owner of a non-renewable resource xg seeks to maximise

: (qu) + - 2 (q2)
V- 1%
146" 9 1+6] 72 %
subject to the constraint
g1+ g2 = X0

» The Lagrangian function for this problem is

L

} v (q2) +Axo— g1 — qo]

vi (q1) + [

1+6 1+9

» The two first order (necessary) conditions are

1 . 1 72 §
1+5V{(Q1)—)\:0v [IM] v (g3) —A=0



A simple two-period resource allocation problem contd.

» Solving the FOCs for the Lagrange multiplier A we get
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A simple two-period resource allocation problem contd.

» Solving the FOCs for the Lagrange multiplier A we get

2(@) g s o el@-vila)
vi (a7) vy (q5)

which is Hotelling's Rule (in discrete time notation)

> If v¢ (g:) = p:q: (zero extraction costs) then v/ (q:) = p: and

we have
P2 —146 < P2 — p1
p1 p1

» In continuous time terms this is equivalent to

=9




A simple two-period resource allocation problem contd.

» Instead, we could attach a multiplier to a stock constraint at
each point in time

2
L= 5 (9 )+[1—1F5} V2(q2)+1i5mx0—x1]

+
113
{ } As [x1 — g1 — xo] + [IM] Az [x0 — qo]



A simple two-period resource allocation problem contd.

» Instead, we could attach a multiplier to a stock constraint at
each point in time

1 1 ]°
= 1+(5V1(q1)+[1+5:| V2(q2)+

1 2
+|:1+5:| )\2[X1_q1_X2]+[

_Hs/\l [xo — x1]

1
1 3
1—|—5] A3 [Xz - CI2]

» The FOCs for g; and g, are now
1 12
v (1) = Lw} Az =0

{ } ) [] =0

1




A simple two-period resource allocation problem contd.

» If the Lagrangian is maximised by g7, it should also be
maximised by x3, so that we can add another FOC

1 12 1 73
_ A = | A=
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A simple two-period resource allocation problem contd.

» If the Lagrangian is maximised by g7, it should also be
maximised by x3, so that we can add another FOC

1 2 1 3
_ A = | Qs =
[1+5] 2+[1+5} 3 =10
» This condition implies

1
- 1+<5A3

Ao

» Hence, the discounted shadow price is also constant across
time
> Substituting for A;, we again get

* 1 *
V{ (q1) = mVﬁ (92)



A simple renewable resource problem

» We can set the problem in terms of a renewable resource by
incorporating a growth function g; (x;) into each of the stock
constraints
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A simple renewable resource problem

» We can set the problem in terms of a renewable resource by
incorporating a growth function g; (x;) into each of the stock
constraints

1 t
[1—}—(5} At [xe—1 4+ ge—1 (Xe—1) — Ge—1 — X¢]

» Solving the Lagrangian as before, we get

o=l [ w@ =L ]2
T+ W\ =775 ™ 15| 2\ T T 8
and

Hé]A _ LiaT“ 1+ ()]
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A simple renewable resource problem contd.

» Solving for A;, we now find the intertemporal rule as

v(g) 1496

» In continuous time, this is equivalent to

dvl(q)/dt /
—F— =r—g (x
(@) g' (x)
» Or, if v/ (q) = p,
p /
—=r—g (x
p g (x)
> If p =0, we get the yield equation
P& (x) _y() _,

p p (1)



