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1 Introduction

The concept of Value at Risk (VaR) measures the “risk” of a

portfolio. More precisely, it is a statement of the following form:

With probability 1 − q the potential loss will not exceed the Value

at Risk–figure.

Speaking in mathematical terms, this is simply the q–quantile of the

distribution of the change of value for a given portfolio P . More

specifically,

V aRq

(

P d
)

= −F−1
P d (1 − q),

where P d is the change of value for a given portfolio over d days

(the d–day return) and FP d is the distribution function of P d.
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In the daily use it is common to derive the Value at Risk–figure

of d days from the one of one–day by multiplying the Value at

Risk–figure of one–day by
√

d, that is

V aRq

(

P d
)

=
√

d · V aRq

(

P 1
)

. (1)

Even banking supervisors recommend this procedure (see the Basel

Committee on Banking Supervision).

On the other hand, if the changes of the value of the considered

portfolio P are self–similar with Hurst coefficient H (with H 6= 1
2),

equation (1) has to be modified in the following way:

V aRq

(

P d
)

= dH
· V aRq

(

P 1
)

. (2)
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To verify this equation, let us first recall the definition of self–

similarity.

Definition 1.1

A real–valued process (X(t))t∈R is self–similar with index H >

0 (H–ss) if for all a > 0, the finite–dimensional distributions of

(X(at))t∈R are identical to the finite–dimensional distributions of
(

aHX(t)
)

t∈R
, i.e., if for any a > 0

(X(at))t∈R

d
=
(

aHX(t)
)

t∈R
.

This implies

FX(at)(x) = FaHX(t)(x) for all a > 0 and t ∈ R

= P
(

aHX(t) < x
)

= P
(

X(t) < a−Hx
)

= FX(t)

(

a−Hx
)

.
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2 Possible Size of Risk Underestimation

Value at Risk Underestimation for Various Days

Given H = 0.55 and H = 0.6

Days H = 0.55 H = 0.6

d d0.55 d0.55 − d
1
2 Relative

Difference

in Percent

d0.6 d0.6 − d
1
2 Relative

Difference

in Percent

1 1 0 0 1 0 0

2 1.46 0.05 3.53 1.52 0.1 7.18

5 2.42 0.19 8.38 2.63 0.39 17.46

10 3.55 0.39 12.2 3.98 0.82 25.89

30 6.49 1.02 18.54 7.7 2.22 40.51

50 8.6 1.53 21.6 10.46 3.39 47.88

100 12.59 2.59 25.89 15.85 5.85 58.49

250 20.84 5.03 31.79 27.46 11.65 73.7

This table shows dH, the difference between dH and
√

d, and the relative difference dH−
√

d√
d

for

various days d and for H = 0.55 and H = 0.6.
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3 Estimation of the Hurst Exponent via

Quantiles

There are different methods for estimating the Hurst exponent:

• the p–th moment method (with p ∈ N), possibly together with

a quantile plot (the so–called QQ–plot),

• the R– or the R/S–statistics (by Hurst or Lo) which captures

only the long range dependencies, and

• the Hill estimator or the peaks over threshold method (POT),

which are both in widespread use in the extreme value theory

(and which does not account for long range dependencies),

just to mention the most popular ones.
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3.1 Theoretical Foundations

In order to derive an alternative estimation of the Hurst exponent,

let us recall, that

V aRq

(

P d
)

= dH · V aRq

(

P1
)

,

if
(

P d
)

is H–ss. Given this, it is easy to derive that

log
(

V aRq

(

P d
))

= H · log (d) + log
(

V aRq

(

P 1
))

. (3)

Thus the Hurst exponent can be derived from the gradient of a

linear regression in a log–log–plot. In particular,

• it is not necessary that the higher moments of the underlying

process exist for this approach.

• it is possible to observe the evolution of the estimation of the

Hurst coefficient along the various quantiles.
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Various Value at Risk Figures for the SAP Daily Closing Stock

Prices, based on Commercial Return
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This graphic shows various Value at Risk figures based on the daily closing stock prices for

the SAP–stock, beginning on June 18th, 1990 and ending on January 13th, 2000. The
Value at Risk has been calculated for the k–day commercial return (with k = 1, . . . ,16)
and for various quantiles, ranging from 7 percent to 30 percent.
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Log–Log–plot for the SAP–Stock, Based on Commercial Return
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log−log−Plot of the VaR over the k−Day Returns for the Quantiles 0.07 to 0.3

This graphic shows the logarithm to the basis 2 of various Value at Risk figures based

on the daily closing stock prices for the SAP–stock, beginning on June 18th, 1990 and

ending on January 13th, 2000. The Value at Risk has been calculated for the 2j–day
commercial return (with j = 0, . . . ,4) and for various quantiles, ranging from 7 percent
to 30 percent (the black dashed lines) from top to bottom, respectively. The solid blue
lines show the linear regression for the various quantiles.
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There are several approaches for calculating the Value at Risk–

figure. The most popular are the

• variance–covariance approach,

• historical simulation,

• Monte–Carlo simulation, and

• extreme value theory.
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In practice banks often estimate the Value at Risk via order statis-

tics, which is the focus of this talk. Let Gj:n(x) be the distribution

function of the j–th order statistics. Since the probability, that ex-

actly j observations (of a total of n observations) are less or equal

x, is given by

n!

j! · (n − j)!
F (x)j (1 − F (x))n−j ,

it can be verified, that

Gj:n(x) =
n
∑

k=j

n!

k! · (n − k)!
F (x)k (1 − F (x))n−k . (4)

This is the probability, that at least j observations are less or equal

x given a total of n observations.
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Equation (4) implies, that the self–similarity holds also for the distri-

bution function of the j–th order statistics of a self–similar random

variable. In this case, one has

Gj:n,P d(x) = Gj:n,P1

(

d−H · x
)

.

It is important, that one has n observations for
(

P1
)

as well as for
(

P d
)

, otherwise the equation does not hold.

This shows that the j–th order statistics preserves – and therefore

shows – the self–similarity of a self–similar process. Thus the j–th

order statistics can be used to estimate the Hurst exponent as it

will be done in this talk.
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3.2 Error of the Quantile Estimation

Obviously, (3) can only be applied, if V aRq

(

P d
)

6= 0. Moreover,

close to zero, a possible error in the quantile estimation will lead to

an error in (3), which is much larger than the original error from

the quantile estimation.

Let l be the number, which represents the q–th quantile of the order

statistics with n observations. With this, xl is the q–th quantile of

a given time series X, which consists of n observations and with

q = l
n. Let X be a stochastic process with a differentiable density

function f > 0. Moreover the variance of xl is

σ2
xl

=
q · (1 − q)

n · (f(xl))
2

,

where f is the density function of X and f must be strictly greater

than zero.
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The propagation of errors are calculated by the total differential.

Thus, the propagation of this error in (3) is given by

σlog(xl)
=

1

xl
·
(

q · (1 − q)

n · (f(xl))
2

)
1
2

=

√

q · (1 − q)

n
· 1

xl · f(xl)
.
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1. Example: The normal distribution

For example, if X ∼ N (0, σ2) the propagation of the error can be

written as

σlog(x) =

√

q · (1 − q)

n
·

√
2π · σ

x · exp
(

− x2

2σ2

)

=

√

q · (1 − q)

n
·

√
2π

y · exp
(

−y2

2

) ,

where the substitution σ · y = x has been used. This shows, that

the error is independent of the variance of the underlying process,

if this underlying process is normal distributed.
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Error Function for the Normal Distribution
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This figure shows the error curves of the quantile estimation (red dash–dotted line) and
of the logarithm of the quantile estimation (blue solid line) for the normal distribution.
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Error Function for the Normal Distribution, a Zoom In
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Error of the quantile estimation

This figure shows the error curves of the quantile estimation (red dash–dotted line) and
of the logarithm of the quantile estimation (blue solid line) for the normal distribution.
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2. Example: The Cauchy distribution

Similarly, if X is Cauchy with mean zero, the propagation of the

error can be shown to be

σlog(x) =

√

q · (1 − q)

n
· π · (x2 + σ2)

σ · x

=

√

q · (1 − q)

n
· π · (y2 + 1)

y
,

where the substitution σ · y = x has also been used.
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Error Function for the Cauchy Distribution, a Zoom In
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This figure shows the error curves of the quantile estimation (red dash–dotted line) and
of the logarithm of the quantile estimation (blue solid line) for the Cauchy distribution.
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4 Estimating the Scaling Law for Some

Stocks

A self–similar process with Hurst exponent H can not have a drift.

Since it is recognized that financial time series do have a drift, they

can not be self–similar. Because of this the wording scaling law

instead of Hurst exponent will be used when talking about financial

time series, which have not been detrended.

Since the scaling law is more relevant in practice than in theory,only

those figures are depicted which are based on commercial returns.
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Estimation of the Scaling Law for 24 DAX–Stocks, Left Side
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Shown are the estimation for the scaling law for 24 DAX–stocks. The underlying time
series is a commercial return. Shown are the lower (left) quantiles. The following stocks
are denoted explicitly: DaimlerChysler (dcx), Karstadt (kar), Volkswagen (vow), Metro
(meo), Hypovereinsbank (hvm), BASF (bas), Veba (veb), Hoechst (hoe), and Bayer
(bay).
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Estimation of the Scaling Law for 24 DAX–Stocks, Left Side
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.01 to 0.3 for 24 Time Series
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the scaling law, which are based on 24
DAX–stocks. The underlying time series is a commercial return. Shown are the lower
(left) quantiles.
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Error of the Estimation of the Scaling Law for 24 DAX–Stocks
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Quantitative Characteristics of the Error of the Regression for the Hurst Exponent Estimation for the Quantiles 0.01 to 0.3 for 24 Time Series
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the error curves of the estimation for the scaling law, which
are based on 24 DAX–stocks. The underlying time series is a commercial return.

c© Olaf Menkens School of Mathematical Sciences, DCU



Value at Risk and Self–Similarity 23

Estimation of the Scaling Law for 24 DAX–Stocks, Right Side
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.7 to 0.99 for 24 ‘DAX−Stocks
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the scaling law, which are based on 24
DAX–stocks. The underlying time series is a commercial return. Shown are the upper
(right) quantiles.
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Error of the Estimation of the Scaling Law for 24 DAX–Stocks
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Quantitative Characteristics of the Error of the Regression for the Hurst Exponent Estimation for the Quantiles 0.99 to 0.7 for 24 ‘DAX−Stocks
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the error curves of the estimation for the scaling law, which
are based on 24 DAX–stocks. The underlying time series is a commercial return.
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Estimation of the Scaling Law for the DJI and its Stocks, LQ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Quantile

H
ur

st
 E

xp
on

en
t

Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.01 to 0.3 for 31 Time Series
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the scaling law, which are based on the
DJI and its 30 stocks. The underlying time series is a commercial return. Shown are the
lower (left) quantiles.
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Estimation of the Scaling Law for the DJI and its Stocks, RQ
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.7 to 0.99 for 31 DJI−Stocks
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the scaling law, which are based on the
DJI and its 30 stocks. The underlying time series is a commercial return. Shown are the
upper (right) quantiles.
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5 Determining the Hurst Exponent

It has been already stated, that the financial time series can not

be self–similar. However, it is possible that the detrended financial

time series are self–similar with Hurst exponent H. This will be

scrutinized in the following where the financial time series have

been detrended.

Since the Hurst exponent is more relevant in theory than in practice,

only those figures are shown which are based on logarithmic returns.
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Hurst Exponent Estimation for 24 DAX–Stocks, Left Quantile
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.01 to 0.3 for 24 Time Series
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the Hurst exponent, which are based
on 24 DAX–stocks. The underlying time series are logarithmic returns, which have been
detrended. Shown are the lower (left) quantiles.
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Hurst Exponent Estimation for 24 DAX–Stocks, Right Quantile
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.7 to 0.99 for 24 ‘DAX−Stocks
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the Hurst exponent, which are based
on 24 DAX–stocks. The underlying time series are logarithmic returns, which have been
detrended. Shown are the upper (right) quantiles.
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Hurst Exponent Estimation for the DJI and its Stocks, LQ
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Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.01 to 0.3 for 31 Time Series
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the Hurst exponent, which are based on
the DJI and its 30 stocks. The underlying time series are logarithmic returns, which have
been detrended. Shown are the lower (left) quantiles.
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Hurst Exponent Estimation for the DJI and its Stocks, RQ

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Quantile

H
ur

st
 E

xp
on

en
t

Quantitative Characteristics of the Hurst Exponent Estimation for the Quantiles 0.7 to 0.99 for 31 DJI−Stocks
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The green solid line is the mean, the magenta dash–dotted lines are the mean plus/minus
the standard deviation, the red triangles are the minimum, and the blue upside down
triangles are the maximum of the estimation for the Hurst exponent, which are based on
the DJI and its 30 stocks. The underlying time series are logarithmic returns, which have
been detrended. Shown are the upper (right) quantiles.
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6 Interpretation of the Hurst Exponent

for Financial Time Series

There are different possibilities of which we discuss the two most

relevant ones:

• Fractional Brownian Motion:

H describes the persistence of the process.

0 < H < 1
2 means that the process is anti–persistent.

1
2 < H < 1 means that the process is persistent.

• α–stable Lévy Process:

H = 1
α for α ∈ [1,2] determines how much the process is heavy–

tailed.
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The bigger H is, the more heavy–tailed the process is.
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Fractional Brownian Motion

Definition 6.1

Let 0 < H ≤ 1. A real–valued Gaussian process (BH(t))t≥0 is called

fractional Brownian motion if E [BH(t)] = 0 and

E [BH(t) · BH(s)] =
1

2

{

t2H + s2H− | t − s |2H
}

· E

[

BH(1)2
]

.

• Note that the distribution of a Gaussian process is determined

by its mean and covariance structure. Hence, the two conditions

given in the above definition specify a unique Gaussian process.

•
(

B1/2(t)
)

t≥0
is a Brownian motion up to a multiplicative con-

stant.
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A Sample Path of the Fractional Brownian Motion with H = 0.1
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A Sample Path of the Fractional Brownian Motion with H = 0.4
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A Sample Path of the Fractional Brownian Motion with H = 0.6
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A Sample Path of the Fractional Brownian Motion with H = 0.9
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Stable Lévy Processes

Definition 6.2

A (cadlag) stochastic process (Xt)t≥0 on (Ω,F , P) with values in

Rd such that X0 = 0 is called a Lévy process if it possesses the

following properties:

1. Independent increments: for every increasing sequence of

times t0 . . . tn, the random variables Xt0, Xt1 − Xt0, . . . , Xtn −
Xtn−1

are independent.

2. Stationary increments: the distribution of Xt+h−Xt does not

depend on t.

3. Stochastic continuity: ∀ǫ > 0, lim
h→0

P

(

|Xt+h − Xt| ≥ ǫ
)

= 0.

Definition 6.3

A probability measure µ on Rd is called (strictly) stable, if for any

a > 0, there exits b > 0 such that µ̂(θ)a = µ̂(b · θ) for all θ ∈ Rd.
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Theorem 6.4

If µ on Rd is stable, there exits a unique α ∈ (0,2] such that b = a1/α.

Such a µ is referred to as α–stable. When α = 2, µ is a mean zero

Gaussian probability measure.

Theorem 6.5

Suppose (Xt)t≥0 is a Lévy process. Then L (X(1)) is stable if and

only if (Xt) is self–similar. The index α of stability and the exponent

H of self–similarity satisfy α = 1
H .

• If Zα is an Rd–valued random variable with a α–stable distribu-

tion, 0 < α < 2, then for any γ ∈ (0, α), E [| Zα |γ] < ∞, but

E [| Zα |α] = ∞.

• Note that being heavy–tailed implies that the variance is infinite.

c© Olaf Menkens School of Mathematical Sciences, DCU



Value at Risk and Self–Similarity 41

Cauchy Density versus Normal Density
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7 Conclusion

The main results are that

• the scaling coefficient 0.5 has to be used very carefully for fi-

nancial time series and

• there are substantial doubts about the self–similarity of the un-

derlying processes of financial time series.
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Concerning the scaling law, it is better to use a scaling law of 0.55

for the left quantile and a scaling law of 0.6 for the right quantile

(the short positions) in order to be on the safe side.

It is important to keep in mind that these figures are only based on

the (highly traded) DAX– and Dow Jones Index–stocks. Consider-

ing low traded stocks might yield even higher maximal scaling laws.

These numbers should be set by the market supervision institutions

like the SEC.

However, it is possible for the banks to reduce their Value at Risk–

figures if they use the correct scaling law numbers. For instance,

the Value at Risk–figure of a well diversified portfolio of Dow Jones

Index–stocks would be reduced in this way about 12%, since it

would have a scaling law of approximately 0.44.
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8 Extensions

• Using bootstrap–methods in order to overcome the lack of data.

• Developing a test on self–similarity on the quantiles which over-

comes the phenomena already described by Granger and New-

bold.
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