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1 Introduction

1.1 Optimal Investment in the Black–Scholes

Setting

Most basic setting:

dP0,0(t) = P0,0(t) r0 dt , P0,0(0) = 1 , “bond”

dP0,1(t) = P0,1(t) [µ0 dt+ σ0 dW0(t)] , P0,1(0) = p1 , “stock”

with constant market coefficients µ0, r0, σ0 6= 0 and where W0 is a

Brownian motion on a complete probability space (Ω,F , P ).
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The optimal portfolio problem in this setting is to find a solution

of �

�

�

�
sup

π(·)∈A0(x)
E
[

U
(

Xπ
0 (T )

)]

,

where U is the utility function of the investor, and Xπ
0 denotes the

wealth process of the investor given the portfolio strategy π. More

specific, the wealth process satisfies

dXπ
0(t) = Xπ

0 (t) [(r0 + π(t) [µ0 − r0]) dt+ π(t)σ0 dW0(t)] ,

Xπ
0(0) = x.
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Classical solution methods are

• the Martingale method (Pliska (1986), Karatzas et al. (1987),

and Cox and Huang (1989)) and

• the stochastic control method (Merton (1969 and 1971)).

A solution of the optimal portfolio problem is called an optimal

portfolio strategy and will be denoted by π∗. The most used

utility functions and the corresponding optimal portfolio strategies

are

i) Logarithmic utility: U(x) = ln(x) with π∗0 = µ0−r0
σ2
0

,

ii) HARA–utility: U(x) = 1
γ
xγ with γ < 1, γ 6= 0 and with

π∗0,γ = 1
1−γ

µ0−r0
σ2
0

,

iii) Exponential utility: U(x) = − exp (−λx) with λ > 0 and with

π∗0,λ(t) = 1

λX
π∗
0,λ(t)

· µ0−r0
σ2
0

· exp (−r0 (T − t)).
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1.2 Traditional Crash Modelling

Well–known empirical fact: Black–Scholes–price–model cannot

explain large movements of real stock prices (the so–called “jumps”

or “crashes”).

Examples: Merton (1976) or Aase (1984).

dP0,1(t) = P0,1(t) [µ0 dt+ σ0 dW0(t) − k dN(t)] , P0,1(0) = p1 .

where N is a Poisson process with intensity λ and k > 0 is the

jump size. In the logarithmic–utility case U(x) = ln(x) the optimal

portfolio strategy π∗p calculates to

π∗p =
σ2
0 + k (µ0 − r0)

2kσ2
0

−

√

√

√

√

kλ− (µ0 − r0)

kσ2
0

+

(

σ2
0 + k (µ0 − r0)

2kσ2
0

)2

.
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Level Lines of the Optimal Portfolio Strategie π∗
P
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The variables are the crash height k and the probability that no crash occurs within the
next year. The market coefficients are assumed to be r0 = 0.05, µ0 = 0.1 and σ0 = 0.2.
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The Dependence of the Optimal Portfolio Strategie π∗
P

on the Crash Height and the Crash Intensity
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This graphic shows the dependence of π∗
P

from the crash height k and the crash intensity
λ. The market coefficients are assumed to be r0 = 0.05, µ0 = 0.1 and σ0 = 0.2.
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Remarks:

• Although these processes deliver a better fit, they do not help

to determine optimal portfolio strategies under the threat of a

crash!

• The time to maturity is very important in crash modelling.

However, this variable is neglected in traditional crash modelling.

• Asymmetry of risk is not taken into consideration:

– For π ∈ [0,1], you can loose at most your investment in the

stock.

– For π < 0 or π > 1, however, you can loose much more than

just your investment in the stock!
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1.3 Alternative Crash Modelling

1. Hua and Wilmott (1997) → Number and size of crashes in a given time
interval are bounded. ⇒ No probabilistic assumptions on height, number
and times of occurence of crashes.

2. Korn and Wilmott (2002) → Determine worst case bounds for the perfor-
mance of optimal investment.

For simplicity: One bond, one stock, at most one crash in [0, T ] with a crash
height of k with 0 < k∗ ≤ k ≤ k∗ < 1. Security prices in “normal times”:

dP0,0(t) = P0,0(t) r0 dt , P0,0(0) = 1 , “bond”

dP0,1(t) = P0,1(t) [µ0 dt+ σ0 dW0(t)] , P0,1(0) = p1 , “stock”

At crash time: stock price falls by a factor of k ∈ [k∗, k∗].

Consequence: The wealth process Xπ
0(t) at crash time t satisfies:

Xπ
0 (t−) = (1 − π(t))Xπ

0 (t−) + π(t)Xπ
0 (t−)

=⇒ (1 − π(t))Xπ
0 (t−) + π(t)Xπ

0 (t−) (1 − k)

=

�
�

�

(1 − π(t)k) · Xπ

0 (t−) = Xπ
0 (t).
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Thus: Following the portfolio process π(·) if a crash of size k

happens at time t leads to a final wealth of

Xπ (T ) = (1 − π(t)k) ·Xπ
0 (T ) ,

if Xπ
0 (·) denotes the wealth process in the model without any crash.

Hence:

• “High” values of π(·) lead to a high final wealth if no crash

occurs at all, but to a high loss at the crash time.

• “Low” values of π(·) lead to a low final wealth if no crash occurs

at all, but to a small loss (or even no loss at all!) at the crash

time.

Moral: We have two competing aspects (“Hedging vs. Return”)

for two different scenarios (“Crash or not”) and are therefore faced

with a balanced problem between crash impact minimization

and return maximization.
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Aim: Find the best uniform worst case bound, e.g. solve'

&

$

%
sup

π(·)∈A0(x)
inf

0≤τ≤T

k∈K

E [U (Xπ (T ))] ,

where the final wealth satisfies Xπ (T ) = (1 − π(τ)k)Xπ
0 (T ) in the

case of a crash of size k at stopping time τ . Moreover, K =

{0} ∪ [k∗, k∗].

Note: To avoid bankruptcy we require π(t) < 1
k∗

for all t ∈ [0, T ].
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Important Remarks: (!)

• We do not (!) compare two different strategies scenario-wise.

Typically, two different strategies have two different worst case

scenarios!

• The worst case bounds do not depend on the probability of the

worst case!

• Assuming µ0 > r0, we do not have to consider portfolio pro-

cesses π(t) that can attain negative values since the utility func-

tion is increasing in x.
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Two extreme strategies (in the logarithmic utility case):

1. “Playing safe”:

π(t) ≡ 0 =⇒ worst case scenario: no crash (!), leading to the

following worst case bound of

WCB0 = E

[

ln
(

X0 (T )
)]

= ln(x) + r0T.

2. “Optimal investment in the crash–free world”:

π(t) ≡ π∗0 = µ0−r0
σ2
0

=⇒ worst case scenario: a crash of maximum

size k∗ (at any arbitrary time (!)), leading to the following worst

case bound of

WCBπ∗0
= E

[

ln
(

Xπ∗0 (T )
)]

= ln(x) + r0T +
1

2

(

µ0 − r0

σ0

)2

T

+ln
(

1 − π∗0k
∗) .
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Insights:

• it depends on the time to maturity which one of the above

strategies is better.

• strategy 1 takes too few risk to be good if no crash occurs while

strategy 2 is too risky to perform well if a crash occurs =⇒ the

optimal strategy should balance this out!

• a constant portfolio process cannot be the optimal one.

c© Olaf Menkens School of Mathematical Sciences, DCU
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2 Optimal Investment under the Threat

of a Crash

This chapter is based on Korn and Wilmott (2002), Korn and M.

(2005), and M. (2006).

2.1 The Set up

U(x) = ln(x), the price of the bond and the risky asset are assumed

to be given by

dP1,0(t) = P1,0(t) r1 dt , P1,0(τ) = P0,0(τ) ,

dP1,1(t) = P1,1(t) [µ1 dt+ σ1 dW1(t)] , P1,1(τ) = (1 − k)P0,1(τ) ,

respectively, with constant market coefficients r1, µ1 and σ1 6= 0

after a possible crash of size k at time τ .

For simplicity, the initial market will also be called market 0, while

the market after a crash will be called market 1.

c© Olaf Menkens School of Mathematical Sciences, DCU
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Definition 2.1

1. The wealth process Xπ(t) in the crash model is defined as

Xπ(t) =

{

Xπ
0(t) for 0 ≤ t < τ

[1 − π(τ)k]X
π,τ,Xπ

0(τ)
1 (t) for t ≥ τ ≥ 0 ,

}

(1)

given the occurrence of a jump of height k at time τ , is strictly

positive.

2. The problem to solve

sup
π(·)∈A(x)

inf
0≤τ≤T,
k∈K

E [ln (Xπ(T ))] , (2)

where the final wealth Xπ(T ) in the case of a crash of size k at

time τ is given by

Xπ(T ) = [1 − π(τ)k]X
π,τ,Xπ

0(τ)
1 (T ) , (3)

with X
π,τ,Xπ

0(τ)
1 (t) as above, is called the worst case scenario

portfolio problem.

c© Olaf Menkens School of Mathematical Sciences, DCU



Crash Hedging Strategies and Optimal Portfolios 16

Definition 2.2

1. The value function to the above problem is defined via

νc(t, x) = sup
π(·)∈A(t,x)

inf
t≤τ≤T,
k∈K

E

[

ln
(

Xπ,t,x(T )
)]

. (4)

2. The value function in the crash–free setting of market i will

be denoted by

νi(t, x) = sup
π(·)∈Ai(t,x)

E

[

ln
(

X
π,t,x
i (T )

)]

for i = 0,1.

c© Olaf Menkens School of Mathematical Sciences, DCU



Crash Hedging Strategies and Optimal Portfolios 17

Definition 2.3

For i = 0,1 let us name

1. the optimal portfolio strategy in market i, assuming that no

crash will happen, by

π∗i :=
µi − ri

σ2
i

.

2. Moreover,

Ψi := ri +
1

2

(

µi − ri

σi

)2

= ri +
σ2
i

2

(

π∗i
)2

will be called the utility growth potential or earning potential

of market i.
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Define for an arbitrary admissible portfolio strategy π(t)

νπ (t, x) := E

[

ln
(

X
π,t,x
0 (T )

)]

= ln (x) + E







T
∫

t

[

π(s) (µ0 − r0) + r0 −
1

2
π2(s)σ2

0

]

ds







= ln (x) −
σ2
0

2
E







T
∫

t

[

(

π(s) − π∗0
)2 −

2

σ2
0

Ψ0

]

ds







= ln (x) + E







T
∫

t

[

Ψ0 −
σ2
0

2

(

π(s) − π∗0
)2

]

ds






.

In particular, the value function of market i given that no crash

occurs is

νi(t, x) = ln (x) + Ψi (T − t) .
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2.2 A Main Result

Definition 2.4

1. A portfolio strategy π̂ determined via the equation

ν̂ (t, x) =

{

ν1 (t, x (1 − π̂(t)k∗)) for π̂(t) ≥ 0
ν1 (t, x (1 − π̂(t)k∗)) for π̂(t) < 0

}

for all t ∈ [0, T ]

will be called a crash hedging strategy.

2. A portfolio strategy π̃ is a partial crash hedging strategy, if

there exists an S ∈ (0, T ) such that π̃ is a crash hedging strategy

on [0, S] and is a solution to the worst case scenario portfolio

problem on [S, T ].

Hereby, the convention ν̂(t, x) := νπ̂(t, x) is used.

c© Olaf Menkens School of Mathematical Sciences, DCU
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Rewriting the determining equation for the non–negative crash hedg-

ing strategy π̂ gives

ν̂ (t, x) = ν1
(

t, x
(

1 − π̂(t)k∗
))

⇐⇒ ln (x) +

T
∫

t

[

Ψ0 −
σ2
0

2

(

π̂(s) − π∗0
)2

]

ds

= ln (x) + ln
(

1 − π̂(t)k∗
)

+ Ψ1 (T − t)

⇐⇒ ln
(

1 − π̂(t)k∗
)

=

T
∫

t

[

Ψ0 − Ψ1 −
σ2
0

2

(

π̂(s) − π∗0
)2

]

ds . (5)

Assuming that π̂ is differentiable, differentiating with respect to t

yields

−π̂′(t)k∗

1 − π̂(t)k∗
=

σ2
0

2

(

π̂(t) − π∗0
)2 + Ψ1 − Ψ0

⇐⇒ π̂′(t) =

(

π̂(t) −
1

k∗

)

[

σ2
0

2

(

π̂(t) − π∗0
)2 + Ψ1 − Ψ0

]

.
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Theorem 2.5
1. If Ψ1 ≥ r0, then there exists a unique crash hedging strategy π̂, which is

given by the solution of the differential equation

π̂′(t) =

(

π̂(t) −
1

k∗

)[

σ2
0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (6)

and π̂(T ) = 0 . (7)

Moreover, this crash hedging strategy is bounded by 0 ≤ π̂ ≤ 1
k∗, if Ψ1 > Ψ0.

In the case of Ψ1 ≤ Ψ0, the crash hedging strategy is bounded by 0 ≤ π̂ ≤

π∗
0 −

√

2
σ2

0

(Ψ0 − Ψ1).

2. If Ψ1 < r0, then there exists a unique crash hedging strategy π̂, which is
given by the solution of the differential equation

π̂′(t) =

(

π̂(t) −
1

k∗

)[

σ2
0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (8)

and π̂(T ) = 0 . (9)

Furthermore, this crash hedging strategy is bounded by π∗
0−
√

2
σ2

0

(Ψ0 − Ψ1) ≤

π̂(t) < 0 for t ∈ [0, T ).
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3. If Ψ1 < Ψ0 and π∗
0 < 0, there exists a partial crash hedging strategy π̃ (which

is different from π̂), if

S := T −
ln
(

1 − π∗
0k∗
)

Ψ0 − Ψ1

> 0 . (10)

With this, π̃ is on [0, S] given by the unique solution of the differential
equation

π̃′(t) =

(

π̃(t) −
1

k∗

)[

σ2
0

2
(π̃(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (11)

and π̃(S) = π∗
0 . (12)

On [S, T ] set π̃(t) := π∗
0. This partial crash hedging strategy is bounded by

π∗
0 −

√

2
σ2

0

(Ψ0 − Ψ1) ≤ π̃ ≤ π∗
0 < 0.

The optimal portfolio strategy for an investor, who wants to maximize her worst
case scenario portfolio problem, is given by

π̄(t) := min {π̂(t), π̃(t), π∗
0} for all t ∈ [0, T ], (13)

where π̃(t) is only taken into account if it exists. π̄ will be named the optimal
crash hedging strategy.
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Geometric Interpretation of the Crash Hedging Strategy
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Example for Ψ1 = Ψ0 and π∗
0 ≥ 0
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This graphic shows π̂ = π̄ = φ̂0 (blue dash–dotted line with black background), ϕ̂ = π∗
0

(blue dotted line), ϕ̄ (green line), φ̂1 (red dash–dotted line), and π∗
1 (red dotted line).

c© Olaf Menkens School of Mathematical Sciences, DCU



Crash Hedging Strategies and Optimal Portfolios 25

Example for Ψ1 > Ψ0 and π∗
0 ≥ 0
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This graphic shows π̂ (black dashed line), π̄ (black line), ϕ̄ (green line), φ̂0 (blue dash–
dotted line), φ̂1 (red dash–dotted line), π∗

0 (blue dotted line), and π∗
1 (red dotted line).
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Example for r0 ≤ Ψ1 ≤ Ψ0 and π∗
0 ≥ 0
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This graphic shows π̂ = π̄ (black line), ϕ̂ (cyan dotted line), ϕ̄ (green line), φ̂0 (blue
dash–dotted line), φ̂1 (red dash–dotted line), π∗

0 = 2 (blue dotted line), and π∗
1 (red

dotted line).
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Example for r0 ≤ Ψ1 ≤ Ψ0 and π∗
0 ≥ 0, the long term behaviour
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This graphic shows the long term behaviour of π̂ = π̄ (black line), ϕ̂ (cyan dotted line),
ϕ̄ (green line), φ̂0 (blue dash–dotted line), φ̂1 (red dash–dotted line), π∗
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1 (red dotted line).
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Example for Ψ1 < r0 and π∗
0 ≥ 0
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This graphic shows π̂ = π̄ (black line), ϕ̄ = ϕ̂ (green line with cyan dotted points), φ̂0
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dotted line).
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Example for Ψ1 > Ψ0 and π∗
0 < 0
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This graphic shows π̂ (black dashed line), π̄ = ϕ̄ = π∗
0 (blue dotted line with black

background), φ̂0 (blue dash–dotted line), φ̂1 (red dash–dotted line), and π∗
1 (red dotted
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c© Olaf Menkens School of Mathematical Sciences, DCU



Crash Hedging Strategies and Optimal Portfolios 30

Example for r0 ≤ Ψ1 ≤ Ψ0 and π∗
0 < 0
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This graphic shows π̂ (black dashed line), π̄ = π̃ (black line), ϕ̂ (cyan dotted line), ϕ̄
(green line), φ̂0 (blue dash–dotted line), φ̂1 (red dash–dotted line), π∗

0 (blue dotted line),
and π∗

1 (red dotted line).
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Example for Ψ1 < r0 and π∗
0 < 0, the long term behaviour
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This graphic shows π̂ (black dashed line), π̄ = π̃ (black line), ϕ̂ (cyan dotted line), ϕ̄
(green line), φ̂0 (blue dash–dotted line), φ̂1 (red dash–dotted line), π∗

0 (blue dotted line),
and π∗

1 (red dotted line).
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Example for Ψ1 < r0 and π∗
0 < 0
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This graphic shows π̂ (black dashed line), π̄ = π̃ (black line), ϕ̂ (cyan dotted line), ϕ̄
(green line), φ̂0 (blue dash–dotted line), φ̂1 (red dash–dotted line), π∗

0 (blue dotted line),
and π∗

1 (red dotted line).
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3.2 Optimal Portfolios Given the Probability of a

Crash

In this section, let us suppose that the investor knows the probability
of a crash occurring. Let p, with p ∈ [0,1], be the probability of a
crash happening. In this situation, the optimization problem writes
to

sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

Ep

[

ln
(

Xπ,t,x(T )
)]

:= sup
π(·)∈A(t,x)

{

p ·

{

inf
t≤τ≤T,

k∈K

E
[

ln
(

Xπ,t,x(T )
)]

}

+ (1 − p)E
[

ln
(

X
π,t,x
0 (T )

)]

}

= sup
π(·)∈A(t,x)

{

p ·

{

inf
t≤τ≤T,

k∈K

E
[

ν1
(

τ,X
π,t,x
0 (τ) (1 − π(τ)k)

)]

}

+ (1 − p)E [νπ (t, x)]

}

.
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Observe that the two extremes, p ∈ {0,1} are straightforward to

solve:

• p = 1: sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E1

[

ln
(

Xπ,t,x(T )
)]

= sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E
[

ln
(

Xπ,t,x(T )
)]

.

Thus, this is the original worst case scenario portfolio problem.

The solution is already known.

• p = 0: sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E0

[

ln
(

Xπ,t,x(T )
)]

= sup
π(·)∈A(t,x)

E
[

ln
(

X
π,t,x
0 (T )

)]

,

which is the classical optimal portfolio problem. The solution

is well–known and is given in our notation (see Definition 1) by

π∗0.
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Let us now consider the case p ∈ (0,1). Denoting the crash hedging

strategy in this situation by π̂p and the corresponding utility function

by ν̂p (t, x) := νπ̂p (t, x), the defining equilibrium equation for the

crash hedging strategy can be written as

ν̂p (t, x) = p · ν1
(

t, x
(

1 − π̂p(t)k
∗))+ (1 − p) νπ̂p(t, x)

⇐⇒ ν̂p (t, x) = p · ν1
(

t, x
(

1 − π̂p(t)k
∗))+ (1 − p) ν̂p(t, x)

⇐⇒ ν̂p (t, x) = ν1
(

t, x
(

1 − π̂p(t)k
∗)) ,

hence π̂p ≡ π̂. This result shows that the crash hedging strategy

remains the same even if the probability of a crash is known. Thus,

this result justifies the wording worst case scenario of the above

developed concept. This is due to the fact that the worst case

scenario should be independent of the probability of the worst case

and which has been shown above. Let us summarize this result in

a proposition.
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Proposition 3.1

Given that the probability of a crash is positive, the worst case

scenario portfolio problem as it has been defined in Definition 2.1

is independent of the probability of the worst case.

If the probability of a crash is zero, the worst case scenario portfolio

problem reduces to the classical crash–free portfolio problem.
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3.3 The q–quantile crash hedging strategy

Obviously, the concept of the worst case scenario has the disadvan-

tage that additional information (namely the given probability of a

crash) is not used. However, if the probability of a crash and the

probability of the crash size is known, it is possible to construct the

(lower) q–quantile crash hedging strategy.

Assume that pc(t) ∈ [0,1] is the probability of a crash at time t ∈

[0, T ] and let p(k, t) ∈ [0,1] be the density of the distribution function

for a crash of size k ∈ [k∗, k∗] at time t. Moreover, suppose that a

function q : [0, T ] −→ [0,1] is given. With this define
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kq (t;π) :=































0 if 1 − pc(t) ≥ q(t)

inf

{

kq : 1 − pc(t) + pc(t)
kq
∫

k∗

p(k, t) dk ≥ q(t)

}

if 1 − pc(t) < q(t)
and π ≥ 0

sup

{

kq : 1 − pc(t) + pc(t)
k∗
∫

kq

p(k, t) dk ≥ q(t)

}

else































for any given portfolio strategy π. This has the following interpre-

tation. The probability that at most a crash of size kq(t) at time

t happens is q(t). Equivalently, the probability that a crash higher

than kq(t) will happen at time t is less than 1− q(t). Obviously, this

is a Value at Risk approach.
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Notice that the worst case of a nonnegative portfolio strategy is

either a crash of size k∗ or no crash. On the other hand, the worst

case of a negative portfolio strategy is either a crash of size k∗

or no crash. Correspondingly, the q–quantile calculates differently

for negative portfolio strategies (see the third row) than for the

nonnegative portfolio strategies (see the second row). Furthermore,

denote by

Kq(t) :=











{0} if kq(t) = 0
{0} ∪ [k∗, kq(t)] if kq(t) 6= 0 and π ≥ 0
{0} ∪ [kq(t), k∗] else











.
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Definition 3.2

1. The problem to solve

sup
π(·)∈A(x)

inf
0≤τ≤T,
k∈Kq(t)

E [ln (Xπ(T ))] , (14)

where the final wealth Xπ(T ) in the case of a crash of size k at

time s is given by

Xπ(T ) = [1 − π(τ)k]X
π,τ,Xπ

0(τ)
1 (T ) , (15)

with X
π,τ,Xπ

0(τ)
1 (t) as above, is called the (lower) q–quantile

scenario portfolio problem.
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2. The value function to the above problem is defined via

νq(t, x) = sup
π(·)∈A(t,x)

inf
t≤τ≤T,
k∈Kq(t)

E

[

ln
(

Xπ,t,x(T )
)]

. (16)

3. A portfolio strategy π̂q determined via the equation

νπ̂q (t, x) = ν1 (t, x (1 − π̂q(t)kq(t))) for all t ∈ [0, T ] with kq(t) > 0

will be called a (lower) q–quantile crash hedging strategy.
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Remark 3.3

1. It is straightforward to see that the 1–quantile scenario portfolio

problem is equivalent to the worst case scenario portfolio prob-

lem in Definition 2.1. Moreover, the 1–quantile crash hedging

strategy is equivalent to the crash hedging strategy in Definition

3.1 in M. (2006), p. 602.

2. Notice that the q–quantile scenario portfolio problem is only a

q–quantile concerning the crash. The randomness of the market

movement represented in the model by a geometric Brownian

motion has been averaged out, namely by taking the expectation

– and not the q–quantile.

Define the support of kq to be

supp (kq) := {t ∈ [0, T ] : kq(t) > 0} .
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Theorem 3.4

Let us suppose that kq is continuously differentiable on supp (kq)

with respect to t.

1. Then there exists a unique (lower) q-quantile crash hedging

strategy π̂q, which is on supp (kq) given by the solution of the

differential equation

π̂′q(t) =

(

π̂q(t) −
1

kq(t)

)[

σ2
0

2

(

π̂q(t) − π∗0
)2 + Ψ1 − Ψ0

]

− π̂q(t)k
′
q(t),

π̂q(T ) = 0 .

For t ∈ [0, T ] \ supp (kq) set π̂q(t) := π∗0.

Moreover, the q–quantile crash hedging strategy is for t ∈ supp (kq)

bounded by

0 ≤ π̂q(t) <
1

kq(t)
≤

1

k∗
if Ψ1 ≥ r0.
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Additionally, if Ψ1 ≤ Ψ0 and π∗0 ≥ 0, the q–quantile crash hedg-

ing strategy has another upper bound with π̂q < π∗0−
√

2
σ2
0
(Ψ0 − Ψ1).

On the other side, if Ψ1 < r0 the q–quantile crash hedging

strategy is bounded by

π∗0 −

√

√

√

√

2

σ2
0

(Ψ0 − Ψ1) < π̂q(t) < 0 for t ∈ [0, T ).

2. If Ψ1 < Ψ0 and π∗0 < 0, there exists a partial q–quantile crash

hedging strategy π̃q at time t (which is different from π̂q), if

Sq(t) := T −
ln
(

1 − π∗0kq(t)
)

Ψ0 − Ψ1
> 0 for t ∈ supp (kq) . (17)

With this, π̃q(t) is given by the unique solution of the differential

equation
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π̃′q(t) =

(

π̃q(t) −
1

kq(t)

)[

σ2
0

2

(

π̃q(t) − π∗0
)2 + Ψ1 − Ψ0

]

− π̃q(t)k
′
q(t),

π̃q (Sq(t)) = π∗0 .

For Sq(t) ≤ 0 set π̃q(t) := π∗0. This partial crash hedging strategy

is bounded by

π∗0 −

√

√

√

√

2

σ2
0

(Ψ0 − Ψ1) < π̃q ≤ π∗0 < 0.

If kq is independent of the time t, the optimal portfolio strategy for

an investor, who wants to maximize her q–quantile scenario portfolio

problem, is given by

π̄q(t) := min {π̂q(t), π̃q(t), π
∗
0} for all t ∈ [0, T ], (18)

where π̃q will be taken into account, if it exists. π̄q will also be

called the optimal q–quantile crash hedging strategy.
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Remark 3.5

1. It is also possible to solve the above problem if kq is not contin-

uously differentiable. In order to verify this define π̂k to be the

unique solution of

π̂′k(t) =

(

π̂k(t) −
1

k

)

[

σ2
0

2

(

π̂k(t) − π∗0
)2 + Ψ1 − Ψ0

]

and (19)

π̂k(T ) = 0, (20)

for k > 0. Set then π̂q(t) := π̂kq(t)(t) where the convention

π̂0(t) := π∗0 is used in order to include the case kq(t) = 0. Note

that this procedure is also possible for continuously differen-

tiable kq. However, only if kq is continuously differentiable, it is

possible that π̂q is also continuously differentiable.

2. Notice that π̂′k1
< π̂′k2

for k1 < k2. Hence, π̂k1 ≥ π̂k2 with strict

inequality applying on [0, T ). Thus, in particular, π̂q(t) > π̂(t)

for t ∈ [0, T ) for any q which satisfies q(t) < 1 for t ∈ [0, T ).

Moreover, π̂q1(t) ≤ π̂q2(t), if q1 > q2.
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3. For this remark, let us suppose that the market conditions do

not change, hence Ψ1 = Ψ0. Moreover, keep in mind that any

π̂k is bounded by π∗0 from above. Thus, it is clear that

ψ(t) :=

{

0 for t = T

π∗0 else

}

is an upper bound for any π̂k with k > 0. Unfortunately, it is

not possible to show that

π̂k∗ −→ ψ

for k∗ ↓ 0 with k∗ 6= 0, since π̂k∗ is only known implicitly and

not explicitly. However, this is exactly what can be observed in

practice.

Moreover, keep in mind that the case k = 0 yields π∗0 as the

optimal portfolio with π∗0 6≡ ψ.
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Example of k −→ 0 for Ψ1 = Ψ0 and π∗
0 ≥ 0
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The Range of (Optimal) q–Quantile Crash Hedging

Strategies for Ψ1 = Ψ0 and π∗
0 ≥ 0
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This graphic shows π̂k∗ (black solid line), π̂k∗ (black dashed line), the range of possible
q–quantile crash hedging strategies (light grey and dark grey area), the range of possible
optimal q–quantile crash hedging strategies (dark grey area), and π∗

0 (black dotted line).
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The Range of (Optimal) q–Quantile Crash Hedging

Strategies for Ψ1 > Ψ0 and π∗
0 ≥ 0
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This graphic shows π̂k∗ (black solid line), π̂k∗ (black dashed line), the range of possible
q–quantile crash hedging strategies (light grey and dark grey area), the range of possible
optimal q–quantile crash hedging strategies (dark grey area), and π∗

0 (black dotted line).
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The Range of (Optimal) q–Quantile Crash Hedging

Strategies for r0 < Ψ1 < Ψ0 and π∗
0 < 0
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This graphic shows π̂k∗ and π̄k∗ (black solid line), π̂k∗ and π̄k∗ (black dashed line), the range
of possible q–quantile crash hedging strategies (light grey area), the range of possible
optimal q–quantile crash hedging strategies (dark grey area), and π∗

0 (black dotted line).
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4 Extensions

Possible extensions are

• More crashes (see Korn and Wilmott (2002), Korn and M.

(2005), M. (2004)).

=⇒ System of differential equations.

• More stocks (see e. g. Hua and Wilmott (1997)).

=⇒ Numerical methods and crash coefficients.

• General utility functions (see Korn and M. (2005), M. (2004)).

=⇒ Stochastic control approach.
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• Connection to problems in actuarial mathematics (see Korn

(2005)).

=⇒ Investing in the presence of additional risk processes.

• Worst case scenario optimization for reinsurance (see Korn, M.

, Steffensen, work in progress)

• Costs and benefits of crash hedging (see M. (2004)).

=⇒ Calculating the costs and the potential benefits of crash

hedging.

• Differential games (see Korn and Steffensen (2005))

• Market coefficients after a crash depend on the crash size k (see

M. (2004)).

=⇒ Differential equations for π̂ and k̂, the worst case crash size.
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