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Background 

• Most economic time series in raw form appear 

exhibit trend behaviour 

 

 

• We would like to construct a test that allows us 

to discriminate between deterministic and 

stochastic trending behaviour, because the 

underlying nature of the trend materially affects 

statistical inference 

 

 

 

 

 

 



• As we’ve seen, even in the simplest framework 

of an AR(1) model, there are aspects of this 

problem that are non-standard 

 

• The essential statistical problem is that estimates 

of the parameters of a model converge to the true 

parameter value at different rates in different 

regions of the parameter space, and some 

limiting distributions are non-standard 

 

• While econometricians have invented ways 

around this problem, properly embedding the 

problem in a probabilistic framework remains 

open 



• My contention is that the problem is intimately 

connected to aspects of planar Brownian motion 

 

• See especially:- 

Pitman & Yor (1986) Asymptotic laws of planar 

Brownian motion, Annals of Probability 14, 733-779. 

 

• Furthermore, the problem can be generalized to a 

wider, possibly universal, context of problems 

that deal with Brownian functionals in all their 

aspects  

Banderier et al (2000) Planar maps and Airy 

phenomena. Lecture Notes in Computer Science. 

Flajolet & Louchard (2001) Analytic variations on the 

Airy distribution.  Algorithmica 31(3), 361-377. 

Matsumoto & Yor (2005) Exponential functionals of 

Brownian motion. Probability Surveys 2, 312-384. 

Lyasoff (2007) Variational approach to the study of 

certain integral functionals of Brownian motion, 

preprint. 



 
• In Econometrics, the “unit root problem” 

involves trying to characterize the (properties of) 

the density of the OLS estimator of the parameter 

in the AR(1) model and generalizations under the 

null hypothesis that it is unity 

 

• This work involves a quadratic functional (the 2-

norm) of Brownian motion 

 

 
 
 
 
 
 
 
 
 
 
 



Lecture II plan 

• Discussion of the unit root problem 

• Outline of the standard approach of deriving laws as 

Wiener functionals 

• Placing the unit root problem in the context of Levy’s 

stochastic area 

• Deriving moments of the distributions 

• Giving a probabilistic interpretation to some integrals 

and densities that emerge  

• Relations to the Riemann zeta function and various 

generalizations, and results in:- 

Pitman & Yor (2003) Infinitely divisible laws 

associated with hyperbolic functions. Canadian 

Journal of Mathematics 55, 292-330 

 

 

 



REGRESSION WITH NON-STATIONARY 

TIME SERIES 

 
Consider the simple AR(1) model 

ttt xx ερ += −1 ,  (t = 1, . . . ,  n) 

where ρ is an unknown parameter, 00 =x , and  

tε  ∼ NID(0, 1).   

 
Consider the joint density 
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The maximum likelihood estimator (MLE) nρ̂  of ρ 

is given by      

21
ˆ TTn =ρ . 



It is worth taking a short digression here to discuss 

the possibility of obtaining exact results. 

 
All Gaussian estimators in this context – not just 

the one above – can be expressed as a ratio of 

quadratic forms in normal variables 
εε
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Take the spectral decomposition 

rrr PPrBA Λ′=− . 

Then with the eigenvalues ordered to be in 

ascending order, the distribution of rX  is given by 

),1( 22

1
i

n

i
irX υχλ∑=

=
,  μυμε rPIN =≡ ),,(  



• It is possible to evaluate this distribution using an 

inversion formula that involves the characteristic 

function of rX .  

IMHOF METHOD 
Uses the Gil-Peleaz (1951) inversion theorem 
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rXφ  is the characteristic function of Xr, 
to derive a more convenient formula 
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where ),( xuβ  and )(uγ  are explicit functions of 
the eigenvalues iλ . 
 
 
Gil-Peleaz, J. (1951) Note on the inversion 

theorem.  Biometrika 38, 481-482. 
Imhof, J.P. (1961) Computing the distribution of 

quadrartic forms in normal variables.  
Biometrika 48, 419-426. 

 



 
 
• In even the simplest AR model, this is 

complicated by two aspects:- 

 

- generically the distribution function may fail to 

be analytic at certain points of its domain and 

the inversion problem is highly oscillatory 

 

- the eigenvalues in the unit root case are only 

available implicitly (see, e.g., Tanaka, 1996, p. 

16). 

 

Generally, finding the eigenvalues can be 

facilitated by the Fredholm approach described 

in Ch. 5 of Tanaka (1996).  

 



References involving laws of quadratic forms 
 
G. Hillier (2001) The density of a quadratic form 

uniformly distributed on the n-sphere, 
Econometric Theory 17, 1-28 

 
G. Forchini (2002) The exact cumulative 

distribution function of a ratio of quadratic 
forms on normal variables, with application to 
the AR(1) model, Econometric Theory, 16, 823-
852. 

 
R.W. Butler & M.S. Paolella (2008) Uniform 

saddlepoint approximation for ratios of 
quadratic forms.  Bernoulli, 14(1), 140-154. 

 
 
 
 

Related literature 
 
Pycke (2007) U-statistics based on the Green’s 
function of the Laplacian on the circle and the 
sphere.  Statistics and Probability Letters 77, 863-
872. 

 
Henze & Nikitin (2002) Watson-type goodness-of-
fit tests based in the integrated empirical process.  
Mathematical Methods of Statistics 11, 183-202. 

 
 
 



Early References involving determinants 
J.S. White (1958) The limiting distribution of the 

serial correlation coefficient in the explosive 
case.  Ann. Math. Statist., 29, 1188-1197. 

 
J.S. White (1959) The limiting distribution of the 

serial correlation coefficient in the explosive 
case II.  Ann. Math. Statist., 30, 831-834. 

 
J.S. White (1961) Asymptotic expansions for the 

mean and variance of the serial correlation 
coefficient, Biometrika 48, 85-94. 

 
 
There may also be a connection with:- 
 
Keisake Hara (2004) Finite dimensional 

determinants as characteristic functions of 
quadratic Wiener functionals.  Elect. Comm. In 
Probab., 9, 26-35. 

 
General references  
 
Tanaka (1996) Time Series Analysis, Wiley. 
Hamilton (1994) Time Series Analysis, Princeton. 



The focus of today’s talk is on a Brownian 

functional that arises as a limiting distribution 

in the AR(1) model 

ttt xx ερ += −1 ,  (t = 1, . . . ,  n) 

where tε  ∼ NID(0, 1).   

 
 

The maximum likelihood estimator (MLE) nρ̂  of ρ 

is given by      
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If 1<ρ , the process is stationary and “the textbook 

treatment” goes something like this: 
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n ,  

where  denotes convergence in distribution.  ⎯→⎯d

 
When 1=ρ , this isn’t useful as a basis of testing 

for a unit root against stationarity; however it can 

be shown that      
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• There is no LLN with this normalization such that the 

denominator converges to a constant.  

 

• What the expression does suggest is that if the statistic has a 

well-defined limit distribution, the ML estimator in this case 

converges to this distribution at a faster rate than it does to a 

normal distribution in the stationary case.  



In fact, the asymptotic sampling properties of 

the ML estimator are determined by the choice 

of initial condition. 
 

We could make the problem “circular” by 

putting say , in which case we could 

(essentially) work with a distributional 

approximation derived by Leipnik, expressing 

the density as the sum of a t-density and 

another. 

11 xxn =+

 

References (for the serial correlation coefficient) 
R.B. Leipnik (1947) Distribution of the serial 

correlation coefficient in a circularly 
correlated universe, Ann. Math. Stat. 18, 
80-87. 

 

J.S. White (1957) A t-test for the serial 
correlation coefficient.  Ann. Math. Stat. 
28(4), 1046-1048 (and acknowledgement of 
priority: 1958, 29(3), p. 935). 

 
This assumption, however, isn’t appropriate 
for the trending series we see. 



Let’s try another initial condition: 
 
Theorem ([Mann and Wald 43, White 58, 

Anderson 59, Dickey and Fuller 79]) Let .  

Then  
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where N is a centred Gaussian random variable 

with variance 1, C is a standard Cauchy random 

variable, W = (W(r), r ≥ 0) is a standard Wiener 

process and )(ρnI   is the (expected) Fisher 

information contained in , . . . ,  about the 

parameter 

1x nx
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• If 1≤ρ , the result remains valid under the 

weaker assumptions that 0x  is an arbitrary 

constant or a random variable with a finite 

second moment not depending on the sequence 

)1,( ≥= ttεε  and ε  is a arbitrary sequence of 

centred and normalized i.i.d. random variables.  

 

• If 1>ρ , the limit distribution depends on the 

initial value, and in general on the particular 

distribution of each tε , even if ε  forms a 

sequence of i.i.d. random variables [Koul & 

Pflug]. 

 

• Different results hold if ε  forms a sequence of 

i.i.d. random variables with a stable distribution 

or in the domain of attraction of a stable law 

[Chan and Tran; Phillips 1990; Mijnheer 1997]. 
     



 

If we normalize by the observed rather than the 

expected Fisher information, the three limit 

distributions are reduced to two: 
 

Theorem [Mann and Wald, Anderson, Dickey 
Fuller] Let 0.  Then  0 =x
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It is possible to use a sequential maximum 

likelihood estimator to obtain a unique limiting 

distribution but this would involve sampling up to a 

prescribed amount of Fisher information and isn’t 

natural in the current context.  
  
Shiryaev, A.N. & V.G. Spokoiny (1997) On 

sequential estimation of an autoregressive 

parameter. Stochastics and Stochastic Reports 

60, 219-240. 



 
In fact, there are three basic time series models that 
are used as building blocks in Econometrics.   
 
This reflects 
 
• the difficulty of treating the initial condition 
 
• the desire to test the random walk hypothesis 

against a linear trend. 
 
 
 
MODEL 1:     ttt xx ερ += −1 ,    (t = 1, . . . ,  n) 

MODEL 2:    ttt xx ερα ++= −1 ,   (t = 1, . . . ,  n) 

MODEL 3: ttt xtx ερβα +++= −1 ,  (t = 1, . . . ,  n) 

 
 
 
 
 
 
 
 
 
 



 
For Model 2, 
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For Model 3, 
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The above formulae are related to results in 

Jandhyala, V.K. & I. B MacNeill (1991) J. 
Statist. Plann., Inference 27, 291-316. 

 
 



As we saw this morning, these and other fomulae 

can be derived using a “two-stage” approach to 

examining limiting distribution theory pertaining to 

non-stationary regression, following work by 

P.C.B. Phillips (1987, Econometrica) 

 
• It is extremely powerful.  But it also has its 

drawbacks. 

 

• It involves in the first stage using a FCLT to 

derive a limit distribution for the (normalized) 

integrated process: 
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The advantage here is that this can be made to 

apply under assumptions that suit the data in 

hand (e.g. Donsker, Erdos and Kac, McLeish, 

Hernndorff, Domowitz and White, de Jong and 

Davidson, Doukhan and Louhichi, Beare). 

 



• In the second stage, we derive the limit 

distribution of the sample statistic based 

explicitly on its construction as a functional of 

the integrated process: 
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EXAMPLE 
Recall the MLE nρ̂  of ρ in Model 1 is given by      
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For the numerator, 
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The integral in (b) is an Ito integral equal to )1)1((2
1 2 −W .  The 

joint convergence of (a) and (b) gives the Dickey-Fuller 
distribution up to a normalization. 
 

Note that the 2σ  cancels. 



 
 

• Recent work has allowed this approach to be 

extended to the analysis of non-linear 

transformations of integrated processes and an 

asymptotic theory of inference that applies to 

non-linear regression. 

 

e.g. Park & Phillips, de Jong, Pötscher, de Jong 

& Wang, and Berkes & Horváth 

 
  

• Major problems remain unsolved in spite of the 

importance of the unit root problem  

 

What is the natural probabilistic setting for this 

work? 
 

How do we characterize the properties of the 

densities? 

 
 
 



 
Other properties of the ML estimator 
 
Theorem [Mikulski and Monsour 91]  As ∞→n , 

0ˆsup →− ρρρρ nE , 
and in particular the estimators nρ̂  are asymptotically uniformly consistent, i.e. as 

, ∞→n
( ) 0ˆsup →>− ερρρρ nP    for all 0>ε . 

 
 
Theorem [Mikulski and Monsour 91] Consider a class of estimators such that, given 
ρ , the bias 
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(Then the ML estimators belong to this class for each 1≠ρ .) 
 

1. For each 1≠ρ , the ML estimator nρ̂  is asymptotically efficient in this class: if 

nρ  is another member in the class, then 
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2. In the case 1<ρ , the estimators nρ̂  are efficient also in the “classical sense”, i.e. 
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When 1=ρ , the ML estimators do NOT belong to 
this class. 
 
 
 
 
 
 

 



 

 

• Here, we simply focus on the zero-mean 
AR(1) model, thinking of it as an artificial 
generating mechanism? 

 

• As Abadir (1992) shows, if we know the 
densities of the relevant statistics for this 
model, we can generate the others using a 
transformation theorem. 

 

• We still don’t have satisfactorily computable 
expressions (exact or approximate) for the 
densities and the usual approach is to derive 
Wiener functionals and simulate critical 
values. 

 
 
 
 
 
 
 
 
 
 
 
 



The density of the Dickey-Fuller distribution is 

encoded in the following Laplace transform:  
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where the Brownian motion starts at 0. 

 
 
At the heart of this formula is the following 

conditional Laplace transform: 
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This is akin to Levy’s formula for the area enclosed 

by the trajectory of a Wiener process and its chord. 



 

• The above Laplace transforms are neatly 

expressed but are very difficult to invert into 

anything other than series that are oscillatory! 

 

• We can see the source of the expressions 

involving parabolic cylinder functions that Karim 

Abadir derived in several papers in the 1990’s: 

 

• The density of  given 01∫
1
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Tolmatz (Ann. Probab., 2002) involves parabolic 

cylinder functions, the source of which is the 
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See:- 
Biane & Yor (1987) Valeurs principales associees aux 

temps locaux browniens Bull. Sc. Math., 111, 23-101. 

 
 

 



Note also that  
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• This is the basis for the Karhunen-Loeve 

expansion of the density function (see again 

Pycke (2007), Statist. Probab. Letters) and 

depends on the zeros of the parabolic cylinder 

function (c.f. the work on limiting distributions 

based on the integral of the absolute value of 

Brownian motion, which is based around the 

zeros of the Airy function) 

 



 

Related work 

Kac (1949) On the distribution of certain Wiener 

functionals.  TAMS 65, 1-13. 

 

Kac (1951) On some connections between probability 

theory and differential and integral equations.  Proc. 

Second Berkeley Symp. Math. Statist. Probab., 189-

215. 

 

Abadir (1995) The joint density of two functionals of 

Brownian motion. Mathematical Methods of 

Statistics 4, 449-462. 

 
Abadir (1995) The limiting distribution of the t ratio 

under a unit root.  Econometric Theory 11, 75-793. 

 
Ghomrasni (2004) On distributions associated with the 

generalized Levy’s stochastic area formula. Studia 

Scientiarum Mathematicarum Hungarica 41, 93-100. 

 

 

 



Two points are worth mentioning here:- 

• A different, more traditional inversion of this 

Laplace transform undertaken by Anderson and 

Darling (1952, Ann. Math. Statist. 23, 193-212) 

involved a modified Bessel function K¼. 

 
• As we’ve just said, in the case of Brownian areas 

involving the integral of the absolute value (1-

norm) of Brownian motion, Airy functions 

emerge in place of the parabolic cylinder 

functions (pertaining to the 2-norm case). 

 
The following expression (Biane and Yor, p.76) 

may suggest that in any general theory the 

Macdonald functions will be fundamental: 
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They also have a role in exponential functionals 

of Brownian motion (Lyasoff, 2007, preprint). 

 



Note that there are more general formulae 

available that could facilitate a better treatment 

of the initial condition in the unit root problem.   

One example is a special case of formula (2.k) in 

Pitman and Yor (1982) which gives 
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where now the Brownian motion is started at a. 
 

Reference 
Pitman & Yor (1982) A decomposition of Bessel 

bridges. Zeit. Wahrsch. Geb., 59, 425-457 
 

This formula can be conveniently derived by the 

“stochastic process approach” in Chapter 4 of Tanaka 

(1996). See also M. Yor (1992) Some Aspects of 

Brownian Motion, ETH Zürich, Ch. 2. 



Another direction is to consider explicitly the 

testing problem 
1:0 =ρH  

not against 
1:1 <ρH  

but against  
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This is useful when considering the power of unit 

root test statistics. 

 

 

 

 

 

 

 

 

 

 



Peter C.B. Phillips (1987, Econometrica) showed 

that if )(tJc  is an Ornstein-Uhlenbeck process, 

satisfying the differential equation 
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We have now expressed the Laplace transform in 

terms of a familiar problem in planar Brownian 

motion: the only differences are that the 

distributions are “shifted” by the term )exp(
2
1 c− and 

if we think in terms of 
2/

)sinh()cosh(
δ

γγ
αγ
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⎟
⎟
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we are “deconvolving” densities compared to the 

case 2=δ  that pertains to Levy’s stochastic area 

formula. 

 

 

 

 

 



 

Some expressions for the density on part of its 

support in the case of a zero initial condition, and 

saddlepoint approximations to the density, are 

given by:- 

 

Larsson (1995) The asymptotic distributions of 

some test statistics in near-integrated AR 

processes, Econometric Theory 11, 306-327. 

 

This is probably the closest approach in the 

econometrics literature to one that would be based 

on planar Brownian motion. 

 

 

 

 

 

 

 



 

An alternative approach I am working on is based 

on constructing parallels with the developments in 

distribution theory relating to the integral of the 

absolute value of Brownian motion via Mellin 

transform asymptotics. 

 

Of course, this isn’t really an alternative approach: 

the ultimate objective is to marry both to construct 

a general theory that may be able even to 

encompass other functionals of Brownian motion.  

And work in representing densities in the following 

paper may be relevant in this general theory:- 

 

Lyasoff (2007) Variational approach to the study of 

certain integral functionals of Brownian motion, 

preprint. 

 

 

 



 

In econometrics we actually want more than this! 

What we really want is (a good approximation to) 

the finite-sample distribution of our test statistics.  

Note, however, that because the rate at which 

estimates approach their true parameter values is 

faster than in the stationary case, we may not 

require as many terms in any expansion as in the 

stationary case. 

 

It is very likely that such an approximation will 

have its roots in the following paper:- 

 

Götze (1979) Asymptotic expansions for bivariate 

von Mises functionals.  Z. Wahrsch. Ver. Geb. 50, 

333-355. 

 

 

 

 



We now consider just the basic joint MGF (Laplace 

transform): 
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Individual Laplace transforms are obtained by 

putting t1 = 0 and t2 = 0: 
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(see, e.g., Biane & Yor, 1987). 

 

 

 



Remarks: 

1. The above expression for the density of Y is not 

particularly tractable from the computational 

point of view! 

 
2. The density can be given a probabilistic 

interpretation if it is written as 
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is the density of { }cBsc s =>= :0inf)(τ , a first 

hitting time of Brownian motion. 

 

 



3. The above derivation applies generally, meaning 

that the density is one in a class of conjugate 

densities.  In particular, the density of the sum 

of Y and an independent copy of Y will have the 

same form and has density 
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⎠
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which is a Jacobi theta function, whose Mellin 

transform is a Dirichlet beta series. 

 

4. The moments of the Dickey-Fuller distribution 

are connected to a distribution that is a 

deconvolution of this theta function and so it 

isn’t surprising that the moments involve 

functions like the Riemann zeta function and 

Dirichlet beta function. In fact, we’ll see that the 

mean is the fractional derivative of a certain 

Hurwitz-Lerch zeta function. 

 



For the purpose of deriving moments of the basic 

Dickey-Fuller distributions we use 
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Basic reference 

Sawa (1972) Finite sample properties of the k-class 

estimators.  Econometrica 40, 653-680. 

 

The Ph.D. thesis of Bent Nielsen, currently 

Nuffield College and Oxford, contains a wealth of 

information that is extremely important. 



The general expressions are 
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The Mellin transforms satisfy a general quadratic 

recurrence relation that facilitates their evaluation, 

e.g. for kjN , , we have 
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where kjN ,  is set equal to zero when .0<j  



 

• Following the Mellin transform approach, we 

invert the Mellin transforms to support an 

analysis of the densities and moments of the 

distributions in a way that directly compares 

with the methods designed for 1-norm of 

Brownian motion. 

 

• For example 
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(k even) 
 in the standard textbook treatment but we use 

Mellin inversion to get a simpler form. 

 



• But for the purpose of today’s talk, we will 

concentrate on deriving the moments of the 

relevant densities and focus relating our results 

to Pitman & Yor (2003) Canadian J. Math. 55, 

292-330. 

 
The basis of this paper is that there are infinitely 

divisible distributions on the half-line Ct, St and Tt 

with Laplace transforms 
t
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Now we are interested in the relations between the 

processes C, S and T and Ĉ , Ŝ  and T̂  characterized 

by  
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The point is that since )2
1exp( 2θ−  is the 

characteristic function of a centred Gaussian r.v. N 

with variance 1, we see that X̂  and X are related in 

the following way: 

tt XNX =ˆ . 

 

 
It transpires that for each moment of the Dickey-

Fuller distribution, we only need to be able to 

evaluate integrals of the form: 
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and for the distribution pertaining to the t-statistic, 
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Concentrating on the Dickey-Fuller distribution, 

Gonzalo & Pitarakis (International Economic 

Review, 1998) showed that the mean (case n = 1) 

could be written in terms of the following series: 
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This is a slightly more complicated function than 

appeared in Pitman and Yor (2003) and we will 

need what Goyal and Laddha (1997) called the 

unified zeta function: 
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Well-known special cases include the Hurwitz-

Lerch zeta function 
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and the Riemann zeta function 
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• Historically, there have been many approaches to 

summing these series including (or beginning 

with) the famous (Basler) problem solved by 

Euler of evaluating )(sζ when s = 2. 

 

• Many ingenious arguments have been offered 

although there are very few constructive proofs 

that systematically deliver sums of zeta series. 

 

• One systematic approach is to write the zeta 

series as a generalized hypergeometric series and 

use (high-level) transformations to try to reduce 

the series to something that has a known sum. 

 



GENERALIZED HYPERGEOMETRIC 
FUNCTIONS 
 
 

The generalized hypergeometric function pFq with p 

numerator and q denominator parameters is defined by 
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Here, κλ)(  denotes the Pochhammer symbol representing 

the function given (in terms of the gamma function) 
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In the case of ),2(ζ  
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and we can reduce this series using a summation theorem 

due to Dixon (or another due to Whipple) to obtain 
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Another type of series, the series whose sum is called 

Catalan’s constant, is 
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This is an alternating version of the above series. Here, 

3F2(1) transformation theorems are not applicable and 

indeed there is no known method of summing this series 

to express it in a closed form like ).2(ζ  

 



For the (integral involved in the) mean of the 

Dickey-Fuller distribution, the following result 

holds: 
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1(23 −F ≈ 0.9833 84067 75370 96. 

 

This alternating series shares the same generic form as Catalan’s 

constant: 
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whose reduction (and those of higher-order than p = 2) were 

considered by Gottschalk and Maslen (1988). 

 
• Unfortunately, the only reductions were derived in terms of 

integral a, although formulae were also offered for general z 

rather than z =1.  Krupnikov and Kölbig (1997) show that 

closed forms are available for the functions for all orders p at 

z = 1 but their techniques do not extent to z = –1. 



This points towards the possibility that the 

moments of the Dickey-Fuller distribution are 

themselves generic constants. 

 

The next result shows that it is possible to 

transform the particular 3F2(–1) to a 3F2(1) 

hypergeometric series (although this transformation 

does not generalize to higher p): 
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This opens up the possibility of using the established 3F2 

transformations.  We want to use (high-level) transformation 

theorems to re-express the above hypergeometric series in a 

different and hopefully recognizable form. 

 



The following identity, due to Thomae, when 

applied iteratively, captures contiguous 

relationships between 3F2(1) series and represents 

possible transformations of the series: 
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There are exactly 120 formal relations, although only 10 

independent relations (once trivial symmetries are 

ignores), but fortunately a paper by Whipple allows the 

independent relations to be found in a reasonably 

straightforward manner. 
 

 

 

 

 

 

 

 

 

 



 

   THEOREM. The independent Thomae relations 

corresponding to the mean of the Dickey-Fuller 

distribution are 

)1;4
5,4

5;1,4
3,4

1(23F  )1;4
5,4

3;2
1,4

1,4
1(

24

)4
1(

23

2
F

π

Γ
=  

               )1;2
3,4

3;2
1,2

1,2
1(

16

)4
1(

232

4
F

π

Γ
=  

               )1;4
5,4

3;1,1,2
1(2

1
23F=  

 

638919250853907.1)1;4
5,4

3;2
1,4

1,4
1(23 ≈F  

820346815090607.1)1;2
3,4

3;2
1,2

1,2
1(23 ≈F  

  

 

 



• None of these generalized hypergeometric series 

is summed in either Gradshteyn & Ryzhik (2007) 

or Prudnikov et al (1990), and the decimal 

expansions neither appear in Sloane’s Online 

Encyclopaedia of Integer Sequences or are 

contained in Plouffe’s Inverter. 

 The series were computed with a high degree of 

accuracy 
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Higher-order moments: 

THEOREM.  For n ∈ N, 
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But in fact we can show for r ∈ R, 
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This result has important implications from the 

point of view of analytic number theory because of 

the way that it will generalize Pitman and Yor’s 
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Further representations: 

• Integral representation 
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actional derivative of the Hurwitz 

zeta function: 

 Fractional derivative representation – follows 

simply from the fact that the unified zeta 

function is a fr

⎭
⎬
⎫

⎩
⎨
⎧ −

− +Φ=+−Φ )4
1,1,(1)

4
1,1,1(* 2/12/1

12/1 rzzDr
π

. 

• rmation 

(Zudilin, 2004, J. London Math. Soc.) 
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Can we explain this? 

  stochastic 

ubordination approach: 

 are really interested in is the 

Mellin transform 
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2. Now we think that for a positive random 

variable, its negative moments are given by 
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3.  In our Dickey-Fuller problem, the moments 

are a series in essentially absolute mom
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Brownian motion is a normal scale 
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6. We can find the characteristic function of 

the following function: 
22/1

24
1

2
1

cosh
1

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛∞
∞−

+Γ=∫
λ

π
λ idxxe xi  . 

 
but the Mellin transfom is more 

complicated. 

 

7. This Fourier transform generalizes to many 

L-functions and other functions, via 
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for example the Dirichlet beta function (case        

t =1) and Riemann zeta function (case t =2).   

 

  

 

 



One final result, again derived from work by 

Marc Yor, reveals the extreme-value nature of 

the Dickey-Fuller distribution. 

 

If X1 and X2 are i.i.d. Gompertz-type r.v.’s 
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Concluding remarks 

• We have presented the unit root distribution 

problem in a wider context than usual, that has 

potential application across Mathematical 

Finance, Econometrics and Combinatorics 

 
• In Mathematical Finance – the pricing of Asian 

options, which can naturally be related to 

problems involving exponential functionals of 

Brownian motion  (Yor, Dufresne, Schröder, 

Lyasoff) 

 
• In Econometrics – the unit root problem, which 

involves trying to characterize the (properties of) 

the density of the OLS estimator of the parameter 



in the AR(1) model under the null hypothesis 

that it is unity 

 

• This work involves a quadratic functional (the 2-

norm) of Brownian motion 

 
• In combinatorics – work on limiting distributions 

based on the integral of the absolute value (the 1-

norm) of Brownian motion, e.g. the area below a 

lattice path, the path length in trees 

 

Can we construct a universal theory? 
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