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• One important aspect of a time series is that it is one realization of a 
multidimensional random variable 

 
• In this context, an assumption of second-order stationarity is 

convenient because it facilitates inference through laws of large 
numbers and central limit theorems in a classical way.   

 
• Another aspect of the second-order stationarity assumption is that it 

permits a Wold decomposition whereby a time series can be 
represented as the sum of a linearly regular part involving an 
infinite-order weighted average of white noise, and a part that is 
perfectly linearly predictable [e.g. Hannan, 1970, Multiple Time 
Series (John Wiley), p. 137].  

 



• This offered some justification for the then emerging Box-Jenkins 
methods, where ARIMA models selected on the basis of the data could be 
viewed as approximations to the regular part in the Wold decomposition 

 
• These models produced satisfactory representations of many observed 

economic time series, at least for the purpose of prediction, but as the 
models were selected purely on the basis of the data, they lacked 
theoretical justification, as if they emerged from a “black box” 

 
• The essential problem faced by the econometrics profession in the 

late 1960s and 1970s was that structural econometric models, 
embodying restrictions from economic theory, were often 
outperformed by the black box models.  

 



• There was also the problem of the proliferation of data-based models for a 
given time series that were incompatible with each other from the point of 
view of economic theory 

 

• In the background, there was a debate about whether or not observed 
aggregate time series, which were manifestly non-stationary, should have 
random walk or other trend components removed prior to estimation given 
the loss of long run information that such transformations imply.  

 

• The introduction of the concepts of unit roots and co-integration in the 
context of non-stationary time series helped to resolve some of these 
issues.  

 
 
 



• Two important papers, which occurred one after the other in an issue in 
Econometrica in 1987 are:- 

 

• Engle, R. F. & C.W.J. Granger (1987) Co-integration and error correction: 
representation, estimation and testing. Econometrica 55, 251-276. 

 

• Phillips, P.C.B. (1987) Time series regression with a unit root. 
Econometrica 55, 277-301. 

 

• Formative influences include work by A.W. Phillips on continuous time 
dynamic disequilibrium trade cycle and cyclical growth models; a paper 
by Sargan (1964) on wages and prices presented at a Colston society 
conference; the paper by Davidson, Hendry, Srba and Yeo (Econ. J., 
1978), universally known as DHSY, on the consumption function; and 
papers by Granger (J. Economet., 1981) and Dickey and Fuller (JASA, 
1979; Econometrica, 1981) 



 



 



 
 



 

Deriving the limiting distribution of the OLS estimator 

in this context is a non-standard statistical problem. 

 

HOWEVER, it is still possible to derive the distribution 

of the numerator of the test statistic by standard methods. 







To derive the limiting distribution of the statistic 
 

 
we resort to functional central limit theory.  The idea is to 

characterize the limiting distribution of random elements that 

live in function spaces like C[0, 1] or D[0, 1].  We consider 

these because of the memory in the process: we need to 

consider its whole trajectory and not just its endpoint. 
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NB The following notation conforms with Tanaka (1996) and differs 

from Phillips (1987) and Hamilton (1994). 

 

We construct a function that measures a scaled (1/ T ) partial sum of the 

errors uj up to a certain fraction r of the total sample T: 
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• An elegant theory can be constructed using D[0, 1] which contains 

jumps but not isolated points but it is not separable under the uniform 

metric discussed above, meaning there are “too many” sets on which to 

define a probability space. 
 

• Skorokhod (1956) showed that the space can be rendered separable 

using what is now called the “Skorokhod metric” (his J1 metric), which 

allows functions to be compared “sideways” as well as vertically:  
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where  denotes the set of all increasing functions Λ ]1,0[]1,0[: →λ . 



 
  

• This is the crucial element in terms of what is needed to define the Borel 

σ-algebra; however the metric space  is not complete and 

Phillips used a modification introduced by Billingsley (1968) that 

preserves the same topology: 
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and Λ′denotes the set of all increasing functions such that ∞≤λ .  
 

 



 (ii) continuous version of the partial sum process 
 
• It is possible to use C[0, 1] endowed with the uniform metric even 

although most of the functions of interest are not continuous but this 
involves an awkward construction that requires extra terms defined to 
make the relevant partial sum process continuous be shown to be 
asymptotically negligible 
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The asymptotic behaviour of the partial sum process in (ii) is the same as 
the that of (i). 
 
 



 
 
Both (i) and (ii) set up the following two-stage approach: 
 
• In the first stage, we consider a real-valued stochastic process ),( N∈ttx  

such that )(][
2/1 rWxn rn σ⇒− , 0>σ , where [rn], ]1,0[∈r , denotes the 

integer part of rn, “⇒” denotes weak convergence in D[0, 1] as 
described above, and W represents standard Brownian motion on ]1,0[ . 
The approach is set up such that one of a variety of such FCLT’s could 
be employed [Donsker, Erdos and Kac, McLeish, Hernndorff].   

 

e.g. Donsker’s theorem: uj i.i.d.(0, σ2) and E(uj4) <  ∞ , 
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, standard BM on C[0, 1]. 



 
• In the second stage, the continuous mapping theorem is applied, which 

preserves weak convergence under continuous mappings from the 

original metric space C[0, 1] or D[0, 1] into Euclidean space, e.g. 
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