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© Optimal management of a fishery.
@ Clark, Schéaefer, Gordon, .... Around 1960.

@ A singular calculus of variations problem.
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Il. On the Harvest

E(t) : Total effort at time t € [0, ).
x(1) = m(t)(1—X2) - gE(D)x(t)

0<x<K and O0<E<Ey

For stationary effort, E(t) = E, two equilibrium :
e Xx=0 unstable
e X stable
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Ill. On the Revenue

e (pax(t) —c) E(t)
p, ¢, q positive constants

o J(E(),x0) = fy™ e~ [(pax(t) — c) E(t)] dt

prex J(E(.), %)
(1) = mx()(1 = X2) — gE()x(1)
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Equivalent problem

[0, K] invariant for the dynamic. 0 equilibrium.

o lfxo#£0  E(t) = LU well defined

+o00
S = [ e (o= o ) ()~ step ot

Adm(xp) := {x(.) : [0, 0] — [0, K], x(0) = Xo,

x(t) € [ (x(1)) == f(x(1)) — gEmx(2), 7 (x(1)) := f(x(1)) 1}
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Singular case

Euler lagrange equation : algebraic equation.
General form

/0 ” e A(x(t)) + B(x(t))x(t)] dt

b — 1 + 5l -0
A(x) + B/ (x)x — Z[B(x(1)x(t)] +5B(x) =0
A'(x(1)) + 6B(x(t)) =0

Unique solution X € (0, K)
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Most Rapid Approach Path : MRAP(xp, X)
e unique curve from xg that reaches x as quickly as possible
e i.e. with velocity f—, f* (corresponding Ej, or 0).
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Optimality of the MRAP

MRAP(xp, X) are optimal using
e Green theorem.
e Hartl Feichtinger transversality condition :

lim sup[e‘“/:t) B(¢)d¢] > 0

t——+o0
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On the Green’s theorem

7{ e~ ST A(X)dt + e~ B(x)dx = / / e~31C(x)dtdx.
PQ D;

Vx,C(x)(x —x) >0
then

MRAP(xg, Xx) are optimal
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Compute E corresponding to X : we find E > 0

Remarks

Proof works only with one solution for Euler Lagrange equation.
Some generalisation by Sethi.

Other Generalisations with the help of Value function approach
and the Hamilton-Jacobi equation.
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