
Fractional Brownian motion and applications

Part I: fractional Brownian motion in Finance



INTRODUCTION

The fBm is an extension of the classical Brownian
motion that allows its disjoint increments to be 

correlated.

Motivated by empirical studies, several authors have
studied financial models driven by the fBm.

Fractional stochastic
volatility models

Fractional Black-
Scholes model



INTRODUCTION

Fractional stochastic volatility models (see Comte and Renauld
(1998) or Comte, Coutin and Renault (2003) explain better the

long-time behaviour of the implied volatility. 

Nevertheless, the fBm (and then the volatility) are not
Markovian, and this becomes a strong difficulty to study and to
put these models into practice (the usual techniques assume the

Markov property). 



INTRODUCTION

The introduction of the fractional Black-Scholes model, where the
Brownian motion in the classical Black-Scholes model is replaced by 

a fBm, have been motivated by empirical studies (see for example
Mandelbrot (1997), Shiryaev (1999) or Willinger (1999)). 

Unfortunately, they allow for arbitrage opportunities (see for example
Cheridito (2003) and Sottinen (2001)). This cashm between theory
and practice have been the motivation of several works that have

tried to preserve the fBm approach at the same time they exclude the
arbitrage opportunities:



INTRODUCTION

Elliot and Van der Hoek (2003) or Hu and Oksendal (2003) 
suggested models where the classical integrals were substituted by 

integrals in the Wick sense. These models have not arbitrage
opportunities but, as it was proved in Bjork and Hult (2005), they

have no natural economic interpretation.

Cheridito (2003) proves that the arbitrage opportunitiesdisappear
by introducing a minimal ammount of time between transactions. 
Guasoni (2005) proves that they also disappear under transaction

costs. These papers open a very interesting field of research.



THE FRACTIONAL BROWNIAN MOTION
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THE FRACTIONAL BROWNIAN MOTION

Basic properties
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THE FRACTIONAL BROWNIAN MOTION

H<λλ every for  continous,Hölder -

( )( )[ ]

( )( )[ ] 0

correlated negatively incrementsdisjoint  

1/2 If

0

:correlated positively incrementsdisjoint  

2/1 If

<−−

⇒

<

>−−

⇒

>

H
r

H
s

H
s

H
t

H
r

H
s

H
s

H
t

BBBBE

H

BBBBE

H



THE FRACTIONAL BROWNIAN MOTION

Simulation of a typical path of fBm:

(from Cheridito (2001))

H=0.2

H=0.5
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THE FRACTIONAL BROWNIAN MOTION

H=0.2

H=0.5

H=0.8

(from Dieker (2004))



THE FRACTIONAL BROWNIAN MOTION

Representations

Mandelbrot and Van Ness (1968):
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THE FRACTIONAL BROWNIAN MOTION

Other representations (see for example Nualart (2003))
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THE FRACTIONAL BROWNIAN MOTION
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THE FRACTIONAL BROWNIAN MOTION

Some works (as Alòs, Mazet and Nualart (2001) or Comte and
Renault (1998)) deal with the following truncated version of the

fractional Brownian motion:
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This process is not a fBm, but it has a simpler representation
while it preserves most of the basic properties of the fBm.



STOCHASTIC CALCULUS WITH RESPECT TO THE 
FRACTIONAL BROWNIAN MOTION
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Possible approaches

Pathwise techniques

(Zähle (1998))

Malliavin calculus
techniques

(Carmona, Coutin and
Montseny (2003), Alòs, 

Mazet and Nualart (2000))



Integration of deterministic functions
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STOCHASTIC CALCULUS WITH RESPECT TO THE 
FRACTIONAL BROWNIAN MOTION
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STOCHASTIC CALCULUS WITH RESPECT TO THE 
FRACTIONAL BROWNIAN MOTION

In the case H<1/2, similar arguments give us that
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Pathwise integrals in the case H>1/2
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APPLICATIONS IN FINANCE

Models driven by the fBm: the arbitrage problem

Consider the fractional Black-Scholes model for a 
bond (Xt) and a stock (Yt)  (H>1/2):
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The introduction of this model has been
motivated by empirical studies (see for example

Willinger et al. (1999))



APPLICATIONS IN FINANCE

This model gives arbitrage opportunities. For
example, we can take
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APPLICATIONS IN FINANCE

Cheridito (2003) proved that, even the market allows
for arbitrage strategies, these strategies cannot be 

constructed in practice. In fact, he proved that if there
is a mimimum ammount of time between transactions, 
the arbitrage opportunities disappear. The main idea is

the following:
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APPLICATIONS IN FINANCE

Consider the strategy defined by
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APPLICATIONS IN FINANCE

Assume that this strategy allows for arbitrage and let k 
be the first moment l such that
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APPLICATIONS IN FINANCE

Guasoni (2006) proved that the arbitrage opportunities also disappear under
transaction costs. To achieve an arbitrage, at some pointt0 we have to start
trading. This decision generates a transaction cost which must be recovered
at a latter time, and this is possible only if the asset price moves enough in 
the future. Hence, if at all times there is a remote possibility of arbitrary

small price changes, then downside risk cannot be eliminated,and arbitrage
is impossible.

The above results by Cheridito (2003) and Guasoni (2006) open a new
scenario, where the fBm can be an appropiate for stock price modelling if
we assume that the non-existence of arbitrage strategies isnot due to the

market, but to the existence of restrictions on the tradingstrategies.



APPLICATIONS IN FINANCE

Long-memory stochastic volatility models

Stochastic volatility models:
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Stochastic process

(see for example Heston (1993), Hull and White
(1987), Stein and Stein (1991) or Scott (1987))

If the volatility is not correlated with W, these
models deal to a symmetric implied volatility smile

(see Renault and Touzi (1996))

A asymmetric implied volatility skew can be 
explained by the existence of a negative correlation

between W and the volatility process. 



APPLICATIONS IN FINANCE

Nevertheless, the dependence of the implied volatility on time to
maturity (term structure) is not well explained by classical stochastic

volatility models.

In practice, de decreasing of the smile amplitude when time to maturity
increases turns out to be much slower than it goes according to

stochastic volatility models.

With this aim, Comte and Renault (1998) and Comte, Coutin and
Renault (2003) have proposed stochastic volatility models based on the

fBm. These models allows us to explain the observed long-time 
behaviour of the implied volatility. 



APPLICATIONS IN FINANCE

In Comte and Renault (1998) the volatility process is
given by
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In this context, the classical Hull and White
formula gives us that call option prices can be 

written as



APPLICATIONS IN FINANCE
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APPLICATIONS IN FINANCE

A recent paper of Comte, Coutin and Renault (2003) 
deal with a stochastic volatility process of the form :
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APPLICATIONS IN FINANCE

In resume, fractional stochastic volatility models allow us to explain
the long-time behaviour of the implied volatility, but they are more 

complex and new technical difficulties arise.
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Fractional Brownian motion and applications

Part II: Applications to surface growth modelling



Most of our life takes place on the surface of something:

INTERFACES IN NATURE

Interesting questions: 

formation, growth and dynamics



SOME EXAMPLES (I)
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SOME EXAMPLES (II)

combustion particle deposition



SOME EXAMPLES (III)

Radial symmetry tumor growth

(Bru et al., Biophysical Journal 2003)



BASIC SCALING NOTIONS (I)

Roughness:
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BASIC SCALING NOTIONS (II)
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NOTIONS ON FRACTAL GEOMETRY (I)

Fractal dimension
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NOCIONS DE GEOMETRIA FRACTAL (II)

Self-affinity (exact or statistical)
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Fractal dimension and self-affinity (exact or statistical)

( )
lxx

lxhxhl

≡−

≈−≡∆

21

21 )()( α

and then α−= 2fd



NOTIONS ON MODELLING (I)

Random deposition
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NOTIONS ON MODELLING (II)

Random deposition
with surface relaxation
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NOTIONS ON MODELLING (III)

Molecular beam
epitaxy (MBE)
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CORRELATED NOISE (FBM)
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