Fractional Brownian motion and applications

Part |: fractional Brownian motion in Finance



INTRODUCTION

The fBm is an extension of the classical Brownian
motion that allows its disjoint increments to be
correlated.

Motivated by empirical studies, several authors have
studied financial models driven by the fBm.
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INTRODUCTION

Fractional stochastic volatility models (see Comte andaré&h
(1998) or Comte, Coutin and Renault (2003) explaindndite
long-time behaviour of the implied volatility.

Nevertheless, the fBm (and then the volatility) are not
Markovian, and this becomes a strong difficulty to studg o
put these models into practice (the usual techniques astwn

Markov property).



INTRODUCTION

The introduction of the fractional Black-Scholes modédhene the
Brownian motion in the classical Black-Scholes model daeed by
a fBm, have been motivated by empirical studies (seexample

Mandelbrot (1997), Shiryaev (1999) or Willinger (1999))

Unfortunately, they allow for arbitrage opportunitiee¢dor example
Cheridito (2003) and Sottinen (2001)). This cashm betwkeory
and practice have been the motivation of several works tina h
tried to preserve the fBm approach at the same time thdydxthe
arbitrage opportunities:



INTRODUCTION

Elliot and Van der Hoek (2003) or Hu and Oksendal (2003)
suggested models where the classical integrals were subdtby
Integrals in the Wick sense. These models have not agbitra
opportunities but, as it was proved in Bjork and Hult (20@hey
have no natural economic interpretation.

Cheridito (2003) proves that the arbitrage opportundisappear

by introducing a minimal ammount of time between tratisas.

Guasoni (2005) proves that they also disappear underirtaos
costs. These papers open a very interesting field of relsea



THE FRACTIONAL BROWNIAN MOTION

A centeredsaussiamprocess" iscalled
afractionalBrownianmotion (fBm)with Hurst
parameteH [(01)if it hasthecovariancéunction

Ry (t,s) :%(tz'4 +s™ |t _QZH)

Usuallyit isassumedhatB}' = 0.



THE FRACTIONAL BROWNIAN MOTION

Basic properties

If H=1/2, BY? isastandardBrownianmotion

It is self - similar:
for a> 0,thelawof a" B|

is thesameasthelaw of B

If H#1/2,B" isnotasemimartiigale

EKBtH Bt )ZJ = (t— 5)"




THE FRACTIONAL BROWNIAN MOTION

If H>1/2
= disjointincrementgositivelycorrelated

ellBr 82 By -81'))>0

If H<1/2
= disjointincrementsegativelycorrelated

ellBr - B2 ey -8 <0

A - Holdercontinousfor everyd < H




THE FRACTIONAL BROWNIAN MOTION

Simulation of a typical path of fBm:
(from Cheridito (2001))
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THE FRACTIONAL BROWNIAN MOTION
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THE FRACTIONAL BROWNIAN MOTION

Representations

Mandelbrot and Van Ness (1968):

B = cl(lH) JR{((t -9 ) -(- S)+)H_;}dWS’

whereC,(H) = [ jo‘”((1+ s -5 _;jds+1J



THE FRACTIONAL BROWNIAN MOTION

Other representations (see for example Nualart (2003))

B = [ K, (6 5w,
CaseH >1/2

1 3 H_i

=K, (t,5)=C,S? Lt (u-s)"2u 2du,

where

N |-

H(2H -1)
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THE FRACTIONAL BROWNIAN MOTION

CaseH <1/2
!
2 1
= K, (t,s) =c, Kij (t-s)">
S
i _3 1
—(H —%jsz " StuH 2(u—s)H'zdu}
where
B 1
2
2H
C, =

(1-2H ),8(1—2H H +;j



THE FRACTIONAL BROWNIAN MOTION

Some works (as Alos, Mazet and Nualart (2001) or Comte and
Renault (1998)) deal with the following truncated version of the
fractional Brownian motion:

W = [ (t-s)"zaw,

This process is not a fBm, but it has a simpler representation
while it preserves most of the basic properties of the fBm.



STOCHASTIC CALCULUS WITH RESPECT TO THE

FRACTIONAL BROWNIAN MOTION

H #1/2= B" isnotasemimartimgale
= Wecannotapplyclassicaltd'scalculus

Possible approaches

Malliavin calculus

Pathwise techniques techniques

(Zahle (1998)) (Carmona, Coutin and
Montseny (2003), Alos,
Mazet and Nualart (2000))




STOCHASTIC CALCULUS WITH RESPECT TO THE

FRACTIONAL BROWNIAN MOTION

Integration of deterministic functions

We denote by H the Hilbert space with scalar
product defined by

(Lo Log),, = Ra(t,9)

Themappindl,, - B canbeextendedoan

IsometrybetweerH andtheGaussiam;pacel-ll(BH )
associateavith B" . Wedenotethisisometryg — B" (@)



STOCHASTIC CALCULUS WITH RESPECT TO THE
FRACTIONAL BROWNIAN MOTION

H>1/2:
R, (t,s) =H(2H —1)j;j02\r —u\ZH_Zdudr
U

(B)=HEH -2 [ |r-u™gp,dudr

Then we deduce the representation

o (0)= ][5 r. (o aw,

T 0K
L c’)rH



STOCHASTIC CALCULUS WITH RESPECT TO THE
FRACTIONAL BROWNIAN MOTION

In the case H<1/2, similar arguments give us that

B"(¢) = [ [K, (T.s)p(s)
1255 e, 5)olr) - (o) aw

or




STOCHASTIC CALCULUS WITH RESPECT TO THE

FRACTIONAL BROWNIAN MOTION

Pathwise integrals in the case H>1/2

Supposédhat f , g areHoldercontinous
functionsof ordersy andg, witha + 5 >1.

Then theRiemann Stieltjesintegral _[ fdg exists

!

If H>1/2andF isregularenough:[ F(B"s)dB!" exists

(in theRiemann Stieltjessense)Moreover

F(t.B1) = F(00)+ [ 2= (5B Jds

0 gX

+ j; ((39_!):( (s, B/ )dBSH



APPLICATIONS IN FINANCE

L

Models driven by the fBm: the arbitrage problen

Consider the fractional Black-Scholes model for a
bond (X,) and a stock (Y,) (H>1/2):
X, =exp(t)
—_ H
Y, =Y, exil(r +v)t+ o8]
The introduction of this model has been

motivated by empirical studies (see for example
Willinger et al. (1999))



APPLICATIONS IN FINANCE

This model gives arbitrage opportunities. For
example, we can take

3 :=cY, [1— edevt + 208 )J
9= 2c,lexplovt + 208/ )-1]

Then, 1t0’s formula gives us that
5 X + Y,
= 99X, + 98, + [ SdX,, +[ S,
0“0 0°0 o U u o U u
=cY, exp(rt){exp(th + 0B/ )—]}2
U

(z9° , z91) isanarbitrageself - financingstrategy



APPLICATIONS IN FINANCE

Cheridito (2003) proved that, even the market allows
for arbitrage strategies, these strategies cannot be
constructed in practice. In fact, he proved that if¢he
IS a mimimum ammount of time between transactions,
the arbitrage opportunities disappear. The main idea is
the following:

For thesakeof simplicity, weassumv =0
(andthenY, =Y, exp(BtH ))

l

actualized value



APPLICATIONS IN FINANCE

Consider the strategy defined by

n-1
I = gol[o} + Zl gil(fivfiﬂ]

wherer,,, —7, > h

(9°,9")is self - financing

U
Vf =V, +(#¥)= 3 g lexelB! ) -exdlB!')

actualized value



APPLICATIONS IN FINANCE

Assume that this strategy allows for arbitrage and let k
be the first moment | such that

. le o] (ex B,'i*ﬂ)— exF(Bg' )) >0a.s.

=1

Notice that

g (ex B, ) — exp(B,f' ))

k—

= g/(exdB )-exdB;)) [<O

It can i=1

be <0!! +g, (exp(B,';'ﬂ)— eXF(B,I: )) It c<a0n”be

\

Contradiction!!!!
M=

I
[

=

A




APPLICATIONS IN FINANCE

Guasoni (2006) proved that the arbitrage opportunities disappear under
transaction costs. To achieve an arbitrage, at some fgovwethave to start
trading. This decision generates a transaction costhwhiest be recovered
at a latter time, and this is possible only if the assetgomoves enough in
the future. Hence, if at all times there is a remote ibdiyg of arbitrary
small price changes, then downside risk cannot be eltedhand arbitrage
IS impossible.

The above results by Cheridito (2003) and Guasoni (20p6h a new
scenario, where the fBm can be an appropiate for stack prodelling if
we assume that the non-existence of arbitrage strategmes ciie to the

market, but to the existence of restrictions on the tradinategies.



APPLICATIONS IN FINANCE

Long-memory stochastic volatility models

Stochastic volatility models:

ds = rSdthVt

Stochastic process

(see for example Heston (1993), Hull and White
(1987), Stein and Stein (1991) or Scott (1987))

If the volatility is not correlated with W, these
models deal to a symmetric implied volatility smile
(see Renault and Touzi (1996))

A asymmetric implied volatility skew can be
explained by the existence of a negative correlation
between W and the volatility process.



APPLICATIONS IN FINANCE

Nevertheless, the dependence of the implied volatility on time to
maturity (term structure) is not well explained by classical stochastic
volatility models.

In practice, de decreasing of the smile amplitude when time to maturity
increases turns out to be much slower than it goes according to
stochastic volatility models.

With this aim, Comte and Renault (1998) and Comte, Coutin and
Renault (2003) have proposed stochastic volatility models based on the
fBm. These models allows us to explain the observed long-time
behaviour of the implied volatility.



APPLICATIONS IN FINANCE

In Comte and Renault (1998) the volatility process is
given by

o, = f(Y,),where

Y, =m+(Y, ~m)e™ + 3 j; e‘“(t‘s)

uncorrelated with W
H>1/2

In this context, the classical Hull and White
formula gives us that call option prices can be
written as



APPLICATIONS IN FINANCE

Classical Black-Scholes formula

Risk-neutral probability

Then, the authors state that the dynamics of the
implied volatilty are directly related to the dynamics of

U, = Ti Tc72ds
L

NoticethatCov(u,,u,,,) =0O(h*"™%),h -
(this does not vanish at the exponential rate, but at the

hyperbolic rate, which explains the long-time behaviour
of stochastic volatilities)



APPLICATIONS IN FINANCE

A recent paper of Comte, Coutin and Renault (2003)
deal with a stochastic volatility process of the form :

o7 = 1 | (t-s)52ds,

r(B)*

whereg, isasquareootprocess

Asc, is Markovian thislong- memorymodel
becomesimplerfrom thecomputatimalpointof view.



APPLICATIONS IN FINANCE

In resume, fractional stochastic volatility models allow us to explain
the long-time behaviour of the implied volatility, but they are more
complex and new technical difficulties arise.
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Fractional Brownian motion and applications

Part II: Applications to surface growth modelling



INTERFACES IN NATURE

Most of our life takes place on the surface of something:

Interesting questions:

formation, growth and dynamics



SOME EXAMPLES (I)




SOME EXAMPLES (II)

combustion particle deposition



SOME EXAMPLES (Ill)
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Radial symmetry tumor growth

(Bru et al., Biophysical Journal 2003)



BASIC SCALING NOTIONS (1)

Ballistic deposition

Roughness:

L
Mean height  h(t) = %Z h(i ,t)
=1

L
Interface width (roughness) \N(L t \/i Z[h | t ]



BASIC SCALING NOTIONS (ll)

A typical plot of the time evolution of the surface width

Inw(L,t)

N —— Int
Y Y

W(L,t) =t” W(L,t) = L? (saturation due by correlation

te=L" z:%;\N(L,t)z L”f(tj

t

X




NOTIONS ON FRACTAL GEOMETRY (1)

Fractal dimension

12

10 - n
a r




NOCIONS DE GEOMETRIA FRACTAL (I1)

Self-affinity (exact or statistical)

h(x)= b "h(bx)

Fractal dimension and self-affinity (exact or statistical)

A1) =[h(x) —h(x,) =1°
%, = %,| =|

andthen d, =2-a



NOTIONS ON MODELLING (1)

Random deposition

T=Fraw,

ot
£=1/2




NOTIONS ON MODELLING (lIl)

Random deposition
with surface relaxation

2
a_h:F+a_I;]+d\A[[X
ot 0X |
a=1/2,=1/4,z=2

(Edward-Wilkinson)




NOTIONS ON MODELLING (lII)

Molecular beam
epitaxy (MBE)

150 | - I —a T T T
i |
By r
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r- 1
on |

4 _!--_...._-_.._.
ot 0X ’
a=3/2,3=3/8z=4

(MBE)



CORRELATED NOISE (FBM)

</7(t, x),7(t, x)> =X~ x'\‘HJ(t -t')
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